Meta-waveguide

Last updated

In photonics, a meta-waveguide is a physical structures that guides electromagnetic waves with engineered functional subwavelength structures. [1] Meta-waveguides are the result of combining the fields of metamaterials and metasurfaces into integrated optics. [2] [3] The design of the subwavelength architecture allows exotic waveguiding phenomena to be explored. [3] [4]

Meta-waveguides can be classified by waveguide platforms or by design methods. [2] If classified by underlying waveguide platform, engineered subwavelength structures can be classified in combination with dielectric waveguides, optical fibers, or plasmonic waveguides. If classified by design methods, meta-waveguides can be classified as either using design primarily by physical intuition, or by computer algorithm based inverse design methods. [1] [5]

Meta-waveguides can provide new degrees of design freedom to the available structural library for optical waveguides in integrated photonics. [1] [3] Advantages can include enhancing the performance of conventional waveguide based integrated optical devices and creating novel device functionalities. [1] [3] Applications of meta-waveguides include beam/polarization splitting, [3] integrated waveguide mode converters, [4] versatile waveguide couplers, [6] lab-on-fiber sensing, [7] nano-optic endoscope imaging, [8] on-chip wavefront shaping, [9] structured-light generations, [10] and optical neural networks. [11] [12] The meta-structures can also be further integrated with van der Waals materials to add more functionalities and reconfigurability. [13] [14]

Related Research Articles

<span class="mw-page-title-main">Photonic crystal</span> Periodic optical nanostructure that affects the motion of photons

A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of natural crystals gives rise to X-ray diffraction and that the atomic lattices of semiconductors affect their conductivity of electrons. Photonic crystals occur in nature in the form of structural coloration and animal reflectors, and, as artificially produced, promise to be useful in a range of applications.

<span class="mw-page-title-main">Metamaterial</span> Materials engineered to have properties that have not yet been found in nature

A metamaterial is any material engineered to have a property that is not found in naturally occurring materials. They are made from assemblies of multiple elements fashioned from composite materials such as metals and plastics. These materials are usually arranged in repeating patterns, at scales that are smaller than the wavelengths of the phenomena they influence. Metamaterials derive their properties not from the properties of the base materials, but from their newly designed structures. Their precise shape, geometry, size, orientation and arrangement gives them their smart properties capable of manipulating electromagnetic waves: by blocking, absorbing, enhancing, or bending waves, to achieve benefits that go beyond what is possible with conventional materials.

<span class="mw-page-title-main">Optical vortex</span> Optical phenomenon

An optical vortex is a zero of an optical field; a point of zero intensity. The term is also used to describe a beam of light that has such a zero in it. The study of these phenomena is known as singular optics.

An optical waveguide is a physical structure that guides electromagnetic waves in the optical spectrum. Common types of optical waveguides include optical fiber waveguides, transparent dielectric waveguides made of plastic and glass, liquid light guides, and liquid waveguides.

Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale, and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical engineering, electrical engineering, and nanotechnology. It often involves dielectric structures such as nanoantennas, or metallic components, which can transport and focus light via surface plasmon polaritons.

<span class="mw-page-title-main">Silicon photonics</span> Photonic systems which use silicon as an optical medium

Silicon photonics is the study and application of photonic systems which use silicon as an optical medium. The silicon is usually patterned with sub-micrometre precision, into microphotonic components. These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems. The silicon typically lies on top of a layer of silica in what is known as silicon on insulator (SOI).

<span class="mw-page-title-main">Slot-waveguide</span>

A slot-waveguide is an optical waveguide that guides strongly confined light in a subwavelength-scale low refractive index region by total internal reflection.

<span class="mw-page-title-main">Subwavelength-diameter optical fibre</span>

A subwavelength-diameter optical fibre is an optical fibre whose diameter is less than the wavelength of the light being propagated through it. An SDF usually consists of long thick parts at both ends, transition regions (tapers) where the fibre diameter gradually decreases down to the subwavelength value, and a subwavelength-diameter waist, which is the main acting part. Due to such a strong geometrical confinement, the guided electromagnetic field in an SDF is restricted to a single mode called fundamental.

Michal Lipson is an American physicist known for her work on silicon photonics. A member of the National Academy of Sciences since 2019, Lipson was named a 2010 MacArthur Fellow for contributions to silicon photonics especially towards enabling GHz silicon active devices. Until 2014, she was the Given Foundation Professor of Engineering at Cornell University in the school of electrical and computer engineering and a member of the Kavli Institute for Nanoscience at Cornell. She is now the Eugene Higgins Professor of Electrical Engineering at Columbia University. In 2009 she co-founded the company PicoLuz, which develops and commercializes silicon nanophotonics technologies. In 2019, she co-founded Voyant Photonics, which develops next generation lidar technology based on silicon photonics. In 2020 Lipson was elected the 2021 vice president of Optica, and serves as the Optica president in 2023.

A nanolaser is a laser that has nanoscale dimensions and it refers to a micro-/nano- device which can emit light with light or electric excitation of nanowires or other nanomaterials that serve as resonators. A standard feature of nanolasers includes their light confinement on a scale approaching or suppressing the diffraction limit of light. These tiny lasers can be modulated quickly and, combined with their small footprint, this makes them ideal candidates for on-chip optical computing.

<span class="mw-page-title-main">Photonic metamaterial</span> Type of electromagnetic metamaterial

A photonic metamaterial (PM), also known as an optical metamaterial, is a type of electromagnetic metamaterial, that interacts with light, covering terahertz (THz), infrared (IR) or visible wavelengths. The materials employ a periodic, cellular structure.

A plasmonic metamaterial is a metamaterial that uses surface plasmons to achieve optical properties not seen in nature. Plasmons are produced from the interaction of light with metal-dielectric materials. Under specific conditions, the incident light couples with the surface plasmons to create self-sustaining, propagating electromagnetic waves known as surface plasmon polaritons (SPPs). Once launched, the SPPs ripple along the metal-dielectric interface. Compared with the incident light, the SPPs can be much shorter in wavelength.

<span class="mw-page-title-main">Orbital angular momentum of light</span> Type of angular momentum in light

The orbital angular momentum of light (OAM) is the component of angular momentum of a light beam that is dependent on the field spatial distribution, and not on the polarization. It can be further split into an internal and an external OAM. The internal OAM is an origin-independent angular momentum of a light beam that can be associated with a helical or twisted wavefront. The external OAM is the origin-dependent angular momentum that can be obtained as cross product of the light beam position and its total linear momentum.

In physics, a high contrast grating is a single layer near-wavelength grating physical structure where the grating material has a large contrast in index of refraction with its surroundings. The term near-wavelength refers to the grating period, which has a value between one optical wavelength in the grating material and that in its surrounding materials.

<span class="mw-page-title-main">Hybrid plasmonic waveguide</span>

A hybrid plasmonic waveguide is an optical waveguide that achieves strong light confinement by coupling the light guided by a dielectric waveguide and a plasmonic waveguide. It is formed by separating a medium of high refractive index from a metal surface by a small gap.

<span class="mw-page-title-main">Plasmonics</span>

Plasmonics or nanoplasmonics refers to the generation, detection, and manipulation of signals at optical frequencies along metal-dielectric interfaces in the nanometer scale. Inspired by photonics, plasmonics follows the trend of miniaturizing optical devices, and finds applications in sensing, microscopy, optical communications, and bio-photonics.

<span class="mw-page-title-main">Electromagnetic metasurface</span>

An electromagnetic metasurface refers to a kind of artificial sheet material with sub-wavelength thickness. Metasurfaces can be either structured or unstructured with subwavelength-scaled patterns in the horizontal dimensions.

Integrated quantum photonics, uses photonic integrated circuits to control photonic quantum states for applications in quantum technologies. As such, integrated quantum photonics provides a promising approach to the miniaturisation and scaling up of optical quantum circuits. The major application of integrated quantum photonics is Quantum technology:, for example quantum computing, quantum communication, quantum simulation, quantum walks and quantum metrology.

Photonic topological insulators are artificial electromagnetic materials that support topologically non-trivial, unidirectional states of light. Photonic topological phases are classical electromagnetic wave analogues of electronic topological phases studied in condensed matter physics. Similar to their electronic counterparts, they, can provide robust unidirectional channels for light propagation.

<span class="mw-page-title-main">Luc Thévenaz</span> Swiss physicist who specializes in fibre optics

Luc Thévenaz is a Swiss physicist who specializes in fibre optics. He is a professor of physics at EPFL and the head of the Group for Fibre Optics School of Engineering.

References

  1. 1 2 3 4 Meng, Yuan; Chen, Yizhen; Lu, Longhui; Ding, Yimin; Cusano, Andrea; Fan, Jonathan A.; Hu, Qiaomu; Wang, Kaiyuan; Xie, Zhenwei; Liu, Zhoutian; Yang, Yuanmu (2021-11-22). "Optical meta-waveguides for integrated photonics and beyond". Light: Science & Applications. 10 (1): 235. doi:10.1038/s41377-021-00655-x. ISSN   2047-7538. PMC   8608813 . PMID   34811345.
  2. 1 2 Sciences, Chinese Academy of. "Allying meta-structures with diverse optical waveguides for integrated photonics and more". phys.org. Retrieved 2022-05-03.
  3. 1 2 3 4 5 Cheben, Pavel; Halir, Robert; Schmid, Jens H.; Atwater, Harry A.; Smith, David R. (August 2018). "Subwavelength integrated photonics". Nature. 560 (7720): 565–572. doi:10.1038/s41586-018-0421-7. ISSN   1476-4687. PMID   30158604. S2CID   52117964.
  4. 1 2 Li, Zhaoyi; Kim, Myoung-Hwan; Wang, Cheng; Han, Zhaohong; Shrestha, Sajan; Overvig, Adam Christopher; Lu, Ming; Stein, Aaron; Agarwal, Anuradha Murthy; Lončar, Marko; Yu, Nanfang (July 2017). "Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces". Nature Nanotechnology. 12 (7): 675–683. doi:10.1038/nnano.2017.50. ISSN   1748-3395. OSTI   1412777. PMID   28416817.
  5. Molesky, Sean; Lin, Zin; Piggott, Alexander Y.; Jin, Weiliang; Vucković, Jelena; Rodriguez, Alejandro W. (November 2018). "Inverse design in nanophotonics". Nature Photonics. 12 (11): 659–670. arXiv: 1801.06715 . doi:10.1038/s41566-018-0246-9. ISSN   1749-4893. S2CID   55105919.
  6. Meng, Yuan; Liu, Zhoutian; Xie, Zhenwei; Wang, Ride; Qi, Tiancheng; Hu, Futai; Kim, Hyunseok; Xiao, Qirong; Fu, Xing; Wu, Qiang; Bae, Sang-Hoon (2020-04-01). "Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface". Photonics Research. 8 (4): 564–576. doi:10.1364/PRJ.384449. ISSN   2327-9125. S2CID   213576669.
  7. Principe, Maria; Consales, Marco; Micco, Alberto; Crescitelli, Alessio; Castaldi, Giuseppe; Esposito, Emanuela; La Ferrara, Vera; Cutolo, Antonello; Galdi, Vincenzo; Cusano, Andrea (March 2017). "Optical fiber meta-tips". Light: Science & Applications. 6 (3): e16226. doi:10.1038/lsa.2016.226. ISSN   2047-7538. PMC   6062173 . PMID   30167235.
  8. Pahlevaninezhad, Hamid; Khorasaninejad, Mohammadreza; Huang, Yao-Wei; Shi, Zhujun; Hariri, Lida P.; Adams, David C.; Ding, Vivien; Zhu, Alexander; Qiu, Cheng-Wei; Capasso, Federico; Suter, Melissa J. (September 2018). "Nano-optic endoscope for high-resolution optical coherence tomography in vivo". Nature Photonics. 12 (9): 540–547. doi:10.1038/s41566-018-0224-2. ISSN   1749-4893. PMC   6350822 . PMID   30713581.
  9. Wang, Zi; Li, Tiantian; Soman, Anishkumar; Mao, Dun; Kananen, Thomas; Gu, Tingyi (2019-08-07). "On-chip wavefront shaping with dielectric metasurface". Nature Communications. 10 (1): 3547. doi:10.1038/s41467-019-11578-y. ISSN   2041-1723. PMC   6686019 . PMID   31391468.
  10. He, Tiantian (2021-11-22). "Guided mode meta-optics: metasurface-dressed waveguides for arbitrary mode couplers and on-chip OAM emitters with a configurable topological charge". Optics Express. 29 (24): 39406–39418. doi:10.1364/OE.443186. ISSN   1094-4087. PMID   34809306. S2CID   243813207.
  11. Khoram, Erfan; Chen, Ang; Liu, Dianjing; Ying, Lei; Wang, Qiqi; Yuan, Ming; Yu, Zongfu (2019-08-01). "Nanophotonic media for artificial neural inference". Photonics Research. 7 (8): 823–827. arXiv: 1810.07815 . doi:10.1364/PRJ.7.000823. ISSN   2327-9125. S2CID   173991055.
  12. Wu, Changming; Yu, Heshan; Lee, Seokhyeong; Peng, Ruoming; Takeuchi, Ichiro; Li, Mo (2021-01-04). "Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network". Nature Communications. 12 (1): 96. doi:10.1038/s41467-020-20365-z. ISSN   2041-1723. PMC   7782756 . PMID   33398011.
  13. Meng, Yuan; Feng, Jiangang; Han, Sangmoon; Xu, Zhihao; Mao, Wenbo; Zhang, Tan; Kim, Justin S.; Roh, Ilpyo; Zhao, Yepin; Kim, Dong-Hwan; Yang, Yang; Lee, Jin-Wook; Yang, Lan; Qiu, Cheng-Wei; Bae, Sang-Hoon (2023-04-21). "Photonic van der Waals integration from 2D materials to 3D nanomembranes". Nature Reviews Materials: 1–20. doi:10.1038/s41578-023-00558-w. ISSN   2058-8437.
  14. Liu, Yuan; Huang, Yu; Duan, Xiangfeng (March 2019). "Van der Waals integration before and beyond two-dimensional materials". Nature. 567 (7748): 323–333. doi:10.1038/s41586-019-1013-x. ISSN   1476-4687.