Task systems are mathematical objects used to model the set of possible configurations of online algorithms. They were introduced by Borodin, Linial and Saks (1992) to model a variety of online problems. A task system determines a set of states and costs to change states. Task systems obtain as input a sequence of requests such that each request assigns processing times to the states. The objective of an online algorithm for task systems is to create a schedule that minimizes the overall cost incurred due to processing the tasks with respect to the states and due to the cost to change states.
If the cost function to change states is a metric, the task system is a metrical task system (MTS). This is the most common type of task systems. Metrical task systems generalize online problems such as paging, list accessing, and the k-server problem (in finite spaces).
A task system is a pair where is a set of states and is a distance function. If is a metric, is a metrical task system. An input to the task system is a sequence such that for each , is a vector of non-negative entries that determine the processing costs for the states when processing the th task.
An algorithm for the task system produces a schedule that determines the sequence of states. For instance, means that the th task is run in state . The processing cost of a schedule is
The objective of the algorithm is to find a schedule such that the cost is minimized.
As usual for online problems, the most common measure to analyze algorithms for metrical task systems is the competitive analysis, where the performance of an online algorithm is compared to the performance of an optimal offline algorithm. For deterministic online algorithms, there is a tight bound on the competitive ratio due to Borodin et al. (1992).
For randomized online algorithms, the competitive ratio is lower bounded by and upper bounded by . The lower bound is due to Bartal et al. (2006, 2005). The upper bound is due to Bubeck, Cohen, Lee and Lee (2018) who improved upon a result of Fiat and Mendel (2003).
There are many results for various types of restricted metrics.
In graph theory, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory, design of robust computer networks, and the theory of error-correcting codes.
In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:
A discrete Hartley transform (DHT) is a Fourier-related transform of discrete, periodic data similar to the discrete Fourier transform (DFT), with analogous applications in signal processing and related fields. Its main distinction from the DFT is that it transforms real inputs to real outputs, with no intrinsic involvement of complex numbers. Just as the DFT is the discrete analogue of the continuous Fourier transform (FT), the DHT is the discrete analogue of the continuous Hartley transform (HT), introduced by Ralph V. L. Hartley in 1942.
In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In -dimensional space the inequality lower bounds the surface area or perimeter of a set by its volume ,
In computational complexity theory, a complexity class is a set of computational problems "of related resource-based complexity". The two most commonly analyzed resources are time and memory.
In probability theory and statistics, the Jensen–Shannon divergence is a method of measuring the similarity between two probability distributions. It is also known as information radius (IRad) or total divergence to the average. It is based on the Kullback–Leibler divergence, with some notable differences, including that it is symmetric and it always has a finite value. The square root of the Jensen–Shannon divergence is a metric often referred to as Jensen–Shannon distance. The similarity between the distributions is greater when the Jensen-Shannon distance is closer to zero.
In computational complexity theory, PostBQP is a complexity class consisting of all of the computational problems solvable in polynomial time on a quantum Turing machine with postselection and bounded error.
In mathematics, the Wasserstein distance or Kantorovich–Rubinstein metric is a distance function defined between probability distributions on a given metric space . It is named after Leonid Vaseršteĭn.
The k-server problem is a problem of theoretical computer science in the category of online algorithms, one of two abstract problems on metric spaces that are central to the theory of competitive analysis. In this problem, an online algorithm must control the movement of a set of kservers, represented as points in a metric space, and handle requests that are also in the form of points in the space. As each request arrives, the algorithm must determine which server to move to the requested point. The goal of the algorithm is to keep the total distance all servers move small, relative to the total distance the servers could have moved by an optimal adversary who knows in advance the entire sequence of requests.
In graph theory, a random geometric graph (RGG) is the mathematically simplest spatial network, namely an undirected graph constructed by randomly placing N nodes in some metric space and connecting two nodes by a link if and only if their distance is in a given range, e.g. smaller than a certain neighborhood radius, r.
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann, after whom it is named.
In computer science, online machine learning is a method of machine learning in which data becomes available in a sequential order and is used to update the best predictor for future data at each step, as opposed to batch learning techniques which generate the best predictor by learning on the entire training data set at once. Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is generated as a function of time, e.g., stock price prediction. Online learning algorithms may be prone to catastrophic interference, a problem that can be addressed by incremental learning approaches.
Clustering is the problem of partitioning data points into groups based on their similarity. Correlation clustering provides a method for clustering a set of objects into the optimum number of clusters without specifying that number in advance.
In computational complexity the decision tree model is the model of computation in which an algorithm is considered to be basically a decision tree, i.e., a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.
Michael Ezra Saks is an American mathematician. He is currently the Department Chair of the Mathematics Department at Rutgers University (2017–) and from 2006 until 2010 was director of the Mathematics Graduate Program at Rutgers University. Saks received his Ph.D. from the Massachusetts Institute of Technology in 1980 after completing his dissertation titled Duality Properties of Finite Set Systems under his advisor Daniel J. Kleitman.
Nathan (Nati) Linial is an Israeli mathematician and computer scientist, a professor in the Rachel and Selim Benin School of Computer Science and Engineering at the Hebrew University of Jerusalem, and an ISI highly cited researcher.
In statistics and physics, multicanonical ensemble is a Markov chain Monte Carlo sampling technique that uses the Metropolis–Hastings algorithm to compute integrals where the integrand has a rough landscape with multiple local minima. It samples states according to the inverse of the density of states, which has to be known a priori or be computed using other techniques like the Wang and Landau algorithm. Multicanonical sampling is an important technique for spin systems like the Ising model or spin glasses.
In information theory, the computationally bounded adversary problem is a different way of looking at the problem of sending data over a noisy channel. In previous models the best that could be done was ensuring correct decoding for up to d/2 errors, where d was the Hamming distance of the code. The problem with doing it this way is that it does not take into consideration the actual amount of computing power available to the adversary. Rather, it only concerns itself with how many bits of a given code word can change and still have the message decode properly. In the computationally bounded adversary model the channel – the adversary – is restricted to only being able to perform a reasonable amount of computation to decide which bits of the code word need to change. In other words, this model does not need to consider how many errors can possibly be handled, but only how many errors could possibly be introduced given a reasonable amount of computing power on the part of the adversary. Once the channel has been given this restriction it becomes possible to construct codes that are both faster to encode and decode compared to previous methods that can also handle a large number of errors.
An Oblivious RAM (ORAM) simulator is a compiler that transforms an algorithm in such a way that the resulting algorithm preserves the input-output behavior of the original algorithm but the distribution of the memory access patterns of the transformed algorithm is independent of the memory access pattern of the original algorithm.
The problem of Multi-Agent Pathfinding (MAPF) is an instance of multi-agent planning and consists in the computation of collision-free paths for a group of agents from their location to an assigned target. It is an optimization problem, since the aim is to find those paths that optimize a given objective function, usually defined as the number of time steps until all agents reach their goal cells. MAPF is the multi-agent generalization of the pathfinding problem, and it is closely related to the shortest path problem in the context of graph theory.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)