Michael Thomashow

Last updated

Michael F. Thomashow is an American plant biologist currently the University Distinguished Professor, MSU Foundation Professor [1] and an Elected Fellow of the American Association for the Advancement of Science since 2010. [2] His current interests are Arabidopsis genes and biology. [3] His highest cited paper is Plant cold acclimation: freezing tolerance genes and regulatory mechanisms at 2757 times, according to GoogleScholar. [4]

Contents

Education

He earned his A.B. at University of California, Los Angeles in 1972 and his Ph.D in 1978. [5]

Publications

Related Research Articles

<i>Arabidopsis thaliana</i> Model plant species in the family Brassicaceae

Arabidopsis thaliana, the thale cress, mouse-ear cress or arabidopsis, is a small flowering plant native to Eurasia and Africa. A. thaliana is considered a weed; it is found along the shoulders of roads and in disturbed land.

<span class="mw-page-title-main">Guard cell</span> Paired cells that control the stomatal aperture

Guard cells are specialized plant cells in the epidermis of leaves, stems and other organs that are used to control gas exchange. They are produced in pairs with a gap between them that forms a stomatal pore. The stomatal pores are largest when water is freely available and the guard cells turgid, and closed when water availability is critically low and the guard cells become flaccid. Photosynthesis depends on the diffusion of carbon dioxide (CO2) from the air through the stomata into the mesophyll tissues. Oxygen (O2), produced as a byproduct of photosynthesis, exits the plant via the stomata. When the stomata are open, water is lost by evaporation and must be replaced via the transpiration stream, with water taken up by the roots. Plants must balance the amount of CO2 absorbed from the air with the water loss through the stomatal pores, and this is achieved by both active and passive control of guard cell turgor pressure and stomatal pore size.

Metacaspases are members of the C14 class of cysteine proteases and thus related to caspases, orthocaspases and paracaspases. The metacaspases are arginine/lysine-specific, in contrast to caspases, which are aspartate-specific.

C-Repeat Binding Factors (CBFs) are transcription factors in plants involved in response to low temperature. Also known as Dehydration Response Element Binding factors (DREBs), they are a subfamily of AP2 DNA binding domain transcription factors.

<span class="mw-page-title-main">DXP reductoisomerase</span>

DXP reductoisomerase is an enzyme that interconverts 1-deoxy-D-xylulose 5-phosphate (DXP) and 2-C-methyl-D-erythritol 4-phosphate (MEP).

<span class="mw-page-title-main">Apetala 2</span> Protein in Arabidopsis

Apetala 2(AP2) is a gene and a member of a large family of transcription factors, the AP2/EREBP family. In Arabidopsis thaliana AP2 plays a role in the ABC model of flower development. It was originally thought that this family of proteins was plant-specific; however, recent studies have shown that apicomplexans, including the causative agent of malaria, Plasmodium falciparum encode a related set of transcription factors, called the ApiAP2 family.

<span class="mw-page-title-main">12-oxophytodienoate reductase</span>

12-oxophytodienoate reductase (OPRs) is an enzyme of the family of Old Yellow Enzymes (OYE). OPRs are grouped into two groups: OPRI and OPRII – the second group is the focus of this article, as the function of the first group is unknown, but is the subject of current research. The OPR enzyme utilizes the cofactor flavin mononucleotide (FMN) and catalyzes the following reaction in the jasmonic acid synthesis pathway:

<span class="mw-page-title-main">Aminodeoxychorismate synthase</span>

In enzymology, an aminodeoxychorismate synthase is an enzyme that catalyzes the chemical reaction

Trans-acting siRNA are a class of small interfering RNA (siRNA) that repress gene expression through post-transcriptional gene silencing in land plants. Precursor transcripts from TAS loci are polyadenylated and converted to double-stranded RNA, and are then processed into 21-nucleotide-long RNA duplexes with overhangs. These segments are incorporated into an RNA-induced silencing complex (RISC) and direct the sequence-specific cleavage of target mRNA. Ta-siRNAs are classified as siRNA because they arise from double-stranded RNA (dsRNA).

<span class="mw-page-title-main">Ethylene-responsive element binding protein</span> Protein family

Ethylene-responsive element binding protein(EREBP) is a homeobox gene from Arabidopsis thaliana and other plants which encodes a transcription factor. EREBP is responsible in part for mediating the response in plants to the plant hormone ethylene.

Peptide signaling plays a significant role in various aspects of plant growth and development and specific receptors for various peptides have been identified as being membrane-localized receptor kinases, the largest family of receptor-like molecules in plants. Signaling peptides include members of the following protein families.

<span class="mw-page-title-main">UVR8</span>

UV-B resistance 8 (UVR8) also known as ultraviolet-B receptor UVR8 is an UV-B – sensing protein found in plants and possibly other sources. It is responsible for sensing ultraviolet light in the range 280-315 nm and initiating the plant stress response. It is most sensitive at 285nm, near the lower limit of UVB. UVR8 was first identified as a crucial mediator of a plant's response to UV-B in Arabidopsis thaliana containing a mutation in this protein. This plant was found to have a hypersensitivity to UV-B which damages DNA. UVR8 is thought to be a unique photoreceptor as it doesn't contain a prosthetic chromophore but its light-sensing ability is intrinsic to the molecule. Tryptophan (Trp) residue 285 has been suggested to act the UV-B sensor, while other Trp residues have been also seen to be involved although in-vivo data suggests that Trp285 and Trp233 are most important.

Methyl halide transferase is an enzyme with systematic name S-adenosylmethionine:iodide methyltransferase. This enzyme catalyses the following chemical reaction

Alan M. Jones is an American cell biologist. He is Kenan Distinguished Professor of Biology at the University of North Carolina at Chapel Hill and has a joint appointment with the Department of Pharmacology in the UNC School of Medicine. He is the President of the American Society of Plant Biologists (ASPB). He is a Fellow of The American Association for the Advancement of Science, Fellow of American Society of Plant Biologists, and an Alexander von Humboldt Fellow.

Freezing tolerance describes the ability of plants to withstand subzero temperatures through the formation of ice crystals in the xylem and intercellular space, or apoplast, of their cells. Freezing tolerance is enhanced as a gradual adaptation to low temperature through a process known as cold acclimation, which initiates the transition to prepare for subzero temperatures through alterations in rate of metabolism, hormone levels and sugars. Freezing tolerance is rapidly enhanced during the first days of the cold acclimation process when temperature drops. Depending on the plant species, maximum freezing tolerance can be reached after only two weeks of exposure to low temperatures. The ability to control intercellular ice formation during freezing is critical to the survival of freeze-tolerant plants. If intracellular ice forms, it could be lethal to the plant when adhesion between cellular membranes and walls occur. The process of freezing tolerance through cold acclimation is a two-stage mechanism:

Robert L. Last is a plant biochemical genomicist who studies metabolic processes that protect plants from the environment and produce products important for animal and human nutrition. His research has covered (1) production and breakdown of essential amino acids, (2) the synthesis and protective roles of Vitamin C and Vitamin E (tocopherols) as well as identification of mechanisms that protect photosystem II from damage, and (3) synthesis and biological functions of plant protective specialized metabolites. Four central questions are: (i) how are leaf and seed amino acids levels regulated, (ii.) what mechanisms protect and repair photosystem II from stress-induced damage, (iii.) how do plants produce protective metabolites in their glandular secreting trichomes (iv.) and what are the evolutionary mechanisms that contribute to the tremendous diversity of specialized metabolites that protect plants from insects and pathogens and are used as therapeutic agents.

A cytokinin signaling and response regulator protein is a plant protein that is involved in a two step cytokinin signaling and response regulation pathway.

<span class="mw-page-title-main">Philip A. Rea</span> British biochemist, science writer and educator

Philip A. Rea is a British biochemist, science writer and educator, who is currently Professor of Biology and Rebecka and Arie Belldegrun Distinguished Director of the Vagelos Program in Life Sciences & Management at the University of Pennsylvania. His major contributions as a biochemist have been in the areas of membrane transport and xenobiotic detoxification, and as a science writer and educator in understanding the intersection between the life sciences and their implementation. In 2005, he and Mark V. Pauly founded the Roy and Diana Vagelos Program in Life Sciences & Management between the School of Arts and Sciences and Wharton School at the University of Pennsylvania, which he continues to co-direct in his capacity as Belldegrun Distinguished Director. Rea's work on serendipity in science has been featured in The Wall Street Journal. Additionally, he has served as a subject matter expert for 'The Scientist.

Jian-Kang Zhu is a plant scientist, researcher and academic. He is a Senior Principal Investigator in the Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences (CAS). He is also the Academic Director of CAS Center of Excellence in Plant Sciences.

Calcium signaling in <i>Arabidopsis</i>

Calcium signaling in Arabidopsis is a calcium mediated signalling pathway that Arabidopsis plants use in order to respond to a stimuli. In this pathway, Ca2+ works as a long range communication ion, allowing for rapid communication throughout the plant. Systemic changes in metabolites such as glucose and sucrose takes a few minutes after the stimulus, but gene transcription occurs within seconds. Because hormones, peptides and RNA travel through the vascular system at lower speeds than the plants response to wounds, indicates that Ca2+ must be involved in the rapid signal propagation. Instead of local communication to nearby cells and tissues, Ca2+ uses mass flow within the vascular system to help with rapid transport throughout the plant. Ca2+ moving through the xylem and phloem acts through a “calcium signature” receptor system in cells where they integrate the signal and respond with the activation of defense genes. These calcium signatures encode information about the stimulus allowing the response of the plant to cater towards the type of stimulus.

References

  1. "Michael Thomashow". aaas.org. Retrieved November 28, 2017.
  2. "Michael Thomashow". aaas.org. Retrieved November 28, 2017.
  3. "Michael Thomashow". msu.edu. Retrieved November 28, 2017.
  4. "Michael Thomashow". scholar.google.com. Retrieved November 28, 2017.
  5. "Michael Thomashow". msu.edu. Retrieved November 28, 2017.