Microplastic remediation

Last updated

Microplastic remediation refers to environmental remediation techniques focused on the removal, treatment and containment of microplastics (small plastic particles) from environmental media such as soil, water, or sediment. [1]

Contents

Microplastics can be removed using physical, chemical, or biological techniques. [2]

Remediaton of microplastics in water

Microplastics can be removed from water by filtration or absorption. Absorption devices include sponges made of cotton and squid bones. [3]

Biochar filtration has been used in wastewater treatment plants. [4]

Efforts to physically remove microplastics from the Great Pacific Garbage Patch have used nets and collection bags. [5]

Remediaton of microplastics in soil

Microplastics are commonly found in soil. [6] [7] Techniques are under development to achieve reductions in soil microplastics via photodegradation, chemical extraction, or bioremediation. [8] [9] [10]

See also

Related Research Articles

<span class="mw-page-title-main">Water treatment</span> Process that improves the quality of water

Water treatment is any process that improves the quality of water to make it appropriate for a specific end-use. The end use may be drinking, industrial water supply, irrigation, river flow maintenance, water recreation or many other uses, including being safely returned to the environment. Water treatment removes contaminants and undesirable components, or reduces their concentration so that the water becomes fit for its desired end-use. This treatment is crucial to human health and allows humans to benefit from both drinking and irrigation use.

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, with a negative impact on their uses. It is usually a result of human activities. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources. These are sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution may affect either surface water or groundwater. This form of pollution can lead to many problems. One is the degradation of aquatic ecosystems. Another is spreading water-borne diseases when people use polluted water for drinking or irrigation. Water pollution also reduces the ecosystem services such as drinking water provided by the water resource.

<span class="mw-page-title-main">Environmental remediation</span> Removal of pollution from soil, groundwater etc.

Environmental remediation is the cleanup of hazardous substances dealing with the removal, treatment and containment of pollution or contaminants from environmental media such as soil, groundwater, sediment. Remediation may be required by regulations before development of land revitalization projects. Developers who agree to voluntary cleanup may be offered incentives under state or municipal programs like New York State's Brownfield Cleanup Program. If remediation is done by removal the waste materials are simply transported off-site for disposal at another location. The waste material can also be contained by physical barriers like slurry walls. The use of slurry walls is well-established in the construction industry. The application of (low) pressure grouting, used to mitigate soil liquefaction risks in San Francisco and other earthquake zones, has achieved mixed results in field tests to create barriers, and site-specific results depend upon many variable conditions that can greatly impact outcomes.

<span class="mw-page-title-main">Bioremediation</span> Process used to treat contaminated media such as water and soil

Bioremediation broadly refers to any process wherein a biological system, living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluents etc., in natural or artificial settings. The natural ability of organisms to adsorb, accumulate, and degrade common and emerging pollutants has attracted the use of biological resources in treatment of contaminated environment. In comparison to conventional physicochemical treatment methods bioremediation may offer advantages as it aims to be sustainable, eco-friendly, cheap, and scalable.

<span class="mw-page-title-main">Phytoremediation</span> Decontamination technique using living plants

Phytoremediation technologies use living plants to clean up soil, air and water contaminated with hazardous contaminants. It is defined as "the use of green plants and the associated microorganisms, along with proper soil amendments and agronomic techniques to either contain, remove or render toxic environmental contaminants harmless". The term is an amalgam of the Greek phyto (plant) and Latin remedium. Although attractive for its cost, phytoremediation has not been demonstrated to redress any significant environmental challenge to the extent that contaminated space has been reclaimed.

Biological augmentation is the addition of archaea or bacterial cultures required to speed up the rate of degradation of a contaminant. Organisms that originate from contaminated areas may already be able to break down waste, but perhaps inefficiently and slowly.

<span class="mw-page-title-main">Environmental technology</span> Technical and technological processes for protection of the environment

Environmental technology (envirotech) is the use of engineering and technological approaches to understand and address issues that affect the environment with the aim of fostering environmental improvement. It involves the application of science and technology in the process of addressing environmental challenges through environmental conservation and the mitigation of human impact to the environment.

<span class="mw-page-title-main">Industrial wastewater treatment</span> Processes used for treating wastewater that is produced by industries as an undesirable by-product

Industrial wastewater treatment describes the processes used for treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater may be reused or released to a sanitary sewer or to a surface water in the environment. Some industrial facilities generate wastewater that can be treated in sewage treatment plants. Most industrial processes, such as petroleum refineries, chemical and petrochemical plants have their own specialized facilities to treat their wastewaters so that the pollutant concentrations in the treated wastewater comply with the regulations regarding disposal of wastewaters into sewers or into rivers, lakes or oceans. This applies to industries that generate wastewater with high concentrations of organic matter, toxic pollutants or nutrients such as ammonia. Some industries install a pre-treatment system to remove some pollutants, and then discharge the partially treated wastewater to the municipal sewer system.

<span class="mw-page-title-main">Mycoremediation</span> Process of using fungi to degrade or sequester contaminants in the environment

Mycoremediation is a form of bioremediation in which fungi-based remediation methods are used to decontaminate the environment. Fungi have been proven to be a cheap, effective and environmentally sound way for removing a wide array of contaminants from damaged environments or wastewater. These contaminants include heavy metals, organic pollutants, textile dyes, leather tanning chemicals and wastewater, petroleum fuels, polycyclic aromatic hydrocarbons, pharmaceuticals and personal care products, pesticides and herbicides in land, fresh water, and marine environments.

<span class="mw-page-title-main">Triclocarban</span> Antimicrobial agent

Triclocarban is an antibacterial chemical once common in, but now phased out of, personal care products like soaps and lotions. It was originally developed for the medical field. Although the mode of action is unknown, TCC can be effective in fighting infections by targeting the growth of bacteria such as Staphylococcus aureus. Additional research seeks to understand its potential for causing antibacterial resistance and its effects on organismal and environmental health.

<span class="mw-page-title-main">Marine plastic pollution</span> Environmental pollution by plastics

Marine plastic pollution is a type of marine pollution by plastics, ranging in size from large original material such as bottles and bags, down to microplastics formed from the fragmentation of plastic material. Marine debris is mainly discarded human rubbish which floats on, or is suspended in the ocean. Eighty percent of marine debris is plastic. Microplastics and nanoplastics result from the breakdown or photodegradation of plastic waste in surface waters, rivers or oceans. Recently, scientists have uncovered nanoplastics in heavy snow, more specifically about 3,000 tons that cover Switzerland yearly.

<span class="mw-page-title-main">Plastic</span> Material of a wide range of synthetic or semi-synthetic organic solids

Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be molded, extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to their widespread use. Plastics typically are made through human industrial systems. Most modern plastics are derived from fossil fuel-based chemicals like natural gas or petroleum; however, recent industrial methods use variants made from renewable materials, such as corn or cotton derivatives.

<span class="mw-page-title-main">Microplastics</span> Extremely small fragments of plastic

Microplastics are fragments of any type of plastic less than 5 mm (0.20 in) in length, according to the U.S. National Oceanic and Atmospheric Administration (NOAA) and the European Chemicals Agency. They cause pollution by entering natural ecosystems from a variety of sources, including cosmetics, clothing, food packaging, and industrial processes. The term microplastics is used to differentiate from larger, non-microscopic plastic waste. Two classifications of microplastics are currently recognized. Primary microplastics include any plastic fragments or particles that are already 5.0 mm in size or less before entering the environment. These include microfibers from clothing, microbeads, plastic glitter and plastic pellets. Secondary microplastics arise from the degradation (breakdown) of larger plastic products through natural weathering processes after entering the environment. Such sources of secondary microplastics include water and soda bottles, fishing nets, plastic bags, microwave containers, tea bags and tire wear. Both types are recognized to persist in the environment at high levels, particularly in aquatic and marine ecosystems, where they cause water pollution. 35% of all ocean microplastics come from textiles/clothing, primarily due to the erosion of polyester, acrylic, or nylon-based clothing, often during the washing process. However, microplastics also accumulate in the air and terrestrial ecosystems. Because plastics degrade slowly, microplastics have a high probability of ingestion, incorporation into, and accumulation in the bodies and tissues of many organisms. The toxic chemicals that come from both the ocean and runoff can also biomagnify up the food chain. In terrestrial ecosystems, microplastics have been demonstrated to reduce the viability of soil ecosystems. As of 2023, the cycle and movement of microplastics in the environment was not fully known. Deep layer ocean sediment surveys in China (2020) show the presence of plastics in deposition layers far older than the invention of plastics, leading to suspected underestimation of microplastics in surface sample ocean surveys.

Recycling can be carried out on various raw materials. Recycling is an important part of creating more sustainable economies, reducing the cost and environmental impact of raw materials. Not all materials are easily recycled, and processing recyclable into the correct waste stream requires considerable energy. Some particular manufactured goods are not easily separated, unless specially process therefore have unique product-based recycling processes.

<span class="mw-page-title-main">Plastisphere</span> Plastic debris suspended in water and organisms which live in it

The plastisphere is a human-made ecosystem consisting of organisms able to live on plastic waste. Plastic marine debris, most notably microplastics, accumulates in aquatic environments and serves as a habitat for various types of microorganisms, including bacteria and fungi. As of 2022, an estimated 51 trillion microplastics are floating in the surface water of the world's oceans. A single 5mm piece of plastic can host 1,000s of different microbial species. Some marine bacteria can break down plastic polymers and use the carbon as a source of energy.

<span class="mw-page-title-main">Sludge</span> Semi-solid slurry

Sludge is a semi-solid slurry that can be produced from a range of industrial processes, from water treatment, wastewater treatment or on-site sanitation systems. It can be produced as a settled suspension obtained from conventional drinking water treatment, as sewage sludge from wastewater treatment processes or as fecal sludge from pit latrines and septic tanks. The term is also sometimes used as a generic term for solids separated from suspension in a liquid; this soupy material usually contains significant quantities of interstitial water. Sludge can consist of a variety of particles, such as animal manure.

Bioremediation of petroleum contaminated environments is a process in which the biological pathways within microorganisms or plants are used to degrade or sequester toxic hydrocarbons, heavy metals, and other volatile organic compounds found within fossil fuels. Oil spills happen frequently at varying degrees along with all aspects of the petroleum supply chain, presenting a complex array of issues for both environmental and public health. While traditional cleanup methods such as chemical or manual containment and removal often result in rapid results, bioremediation is less labor-intensive, expensive, and averts chemical or mechanical damage. The efficiency and effectiveness of bioremediation efforts are based on maintaining ideal conditions, such as pH, RED-OX potential, temperature, moisture, oxygen abundance, nutrient availability, soil composition, and pollutant structure, for the desired organism or biological pathway to facilitate reactions. Three main types of bioremediation used for petroleum spills include microbial remediation, phytoremediation, and mycoremediation. Bioremediation has been implemented in various notable oil spills including the 1989 Exxon Valdez incident where the application of fertilizer on affected shoreline increased rates of biodegradation.

Contaminants of emerging concern (CECs) is a term used by water quality professionals to describe pollutants that have been detected in environmental monitoring samples, that may cause ecological or human health impacts, and typically are not regulated under current environmental laws. Sources of these pollutants include agriculture, urban runoff and ordinary household products and pharmaceuticals that are disposed to sewage treatment plants and subsequently discharged to surface waters.

<span class="mw-page-title-main">Microplastics and human health</span> How plastic particles affect human health

Microplastics effects on human health are of growing concern and an area of research. The tiny particles known as microplastics (MPs), have been found in various environmental and biological matrices, including air, water, food, and human tissues. Microplastics, defined as plastic fragments smaller than 5 mm, and even smaller particles such as nanoplastics (NP), particles smaller than 1000 nm in diameter, have raised concerns impacting human health. The pervasive presence of plastics in our environment has raised concerns about their long-term impacts on human health. While visible pollution caused by larger plastic items is well-documented, the hidden threat posed by nanoplastics remains under-explored. These particles originate from the degradation of larger plastics and are now found in various environmental matrices, including water, soil, and air. Given their minute size, nanoplastics can penetrate biological barriers and accumulate in human tissues, potentially leading to adverse health effects.

References

  1. Van Melkebeke, Michiel; Janssen, Colin; De Meester, Steven (2020-07-21). "Characteristics and Sinking Behavior of Typical Microplastics Including the Potential Effect of Biofouling: Implications for Remediation". Environmental Science & Technology. 54 (14): 8668–8680. doi:10.1021/acs.est.9b07378. ISSN   0013-936X.
  2. Ahmed, Riaz; Hamid, Ansley K.; Krebsbach, Samuel A.; He, Jianzhou; Wang, Dengjun (2022-04-01). "Critical review of microplastics removal from the environment". Chemosphere. 293: 133557. doi:10.1016/j.chemosphere.2022.133557. ISSN   0045-6535.
  3. Perkins, Tom (2024-12-10). "Cotton-and-squid-bone sponge can soak up 99.9% of microplastics, scientists say". The Guardian. ISSN   0261-3077 . Retrieved 2024-12-14.
  4. Dayal, Lovely; Yadav, Krishna; Dey, Uttiya; Das, Kousik; Kumari, Preeti; Raj, Deep; Mandal, Rashmi Ranjan (2024-11-01). "Recent advancement in microplastic removal process from wastewater - A critical review". Journal of Hazardous Materials Advances. 16: 100460. doi:10.1016/j.hazadv.2024.100460. ISSN   2772-4166.
  5. Cade, Kylar (2024-05-20). "The Plastic Pollution Treaty and the Great Pacific Garbage Patch - Strategy International · Think Tank & Consulting Services". Strategy International - Think Tank & Consulting Services. Retrieved 2024-12-14.
  6. Yang, Ling; Zhang, Yulan; Kang, Shichang; Wang, Zhaoqing; Wu, Chenxi (2021-08-01). "Microplastics in soil: A review on methods, occurrence, sources, and potential risk". Science of The Total Environment. 780: 146546. doi:10.1016/j.scitotenv.2021.146546. ISSN   0048-9697.
  7. Nath, Soumitra; Enerijiofi, Kingsley Erhons; Astapati, Ashim Das; Guha, Anupam (2024). "Microplastics and nanoplastics in soil: Sources, impacts, and solutions for soil health and environmental sustainability". Journal of Environmental Quality. 53 (6): 1048–1072. doi:10.1002/jeq2.20625. ISSN   1537-2537.
  8. Xu, Tingting; Wang, Xiyuan; Shi, Qingdong; Liu, Huapeng; Chen, Yutong; Liu, Jia (2024-07-01). "Review of Soil Microplastic Degradation Pathways and Remediation Techniques". International Journal of Environmental Research. 18 (5): 77. doi:10.1007/s41742-024-00615-4. ISSN   2008-2304.
  9. Radford, Freya M.; Zapata-Restrepo, Lina A.; Horton, Alice D.; Hudson, Malcolm J.; Shaw, Peter D.; Williams, Ian (2021). "Developing a systematic method for extraction of microplastics in soils". Analytical Methods. 13 (14): 1695–1705. doi:10.1039/D0AY02086A.
  10. Chia, Rogers Wainkwa; Lee, Jin-Yong; Cha, Jihye (2023-11-30), Thakur, Sveta; Singh, Lakhveer (eds.), "Bioremediation of Soil Microplastics: Categories and Mechanisms", ACS Symposium Series, vol. 1459, Washington, DC: American Chemical Society, pp. 19–32, doi:10.1021/bk-2023-1459.ch002, ISBN   978-0-8412-9701-2 , retrieved 2024-12-14