Minimal reproducible example

Last updated

In computing, a minimal reproducible example (abbreviated MRE) is a collection of source code and other data files which allow a bug or problem to be demonstrated and reproduced. The important feature of a minimal reproducible example is that it is as small and as simple as possible, such that it is just sufficient to demonstrate the problem, but without any additional complexity or dependencies which will make resolution harder.

A minimal reproducible example may also be referred to as a reprex, a minimal working example (MWE), a minimal complete verifiable example (MCVE), or a short self-contained correct example (SSCCE).

Related Research Articles

<span class="mw-page-title-main">Decision problem</span> Yes/no problem in computer science

In computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question of the input values. An example of a decision problem is deciding by means of an algorithm whether a given natural number is prime. Another is the problem "given two numbers x and y, does x evenly divide y?". The answer is either 'yes' or 'no' depending upon the values of x and y. A method for solving a decision problem, given in the form of an algorithm, is called a decision procedure for that problem. A decision procedure for the decision problem "given two numbers x and y, does x evenly divide y?" would give the steps for determining whether x evenly divides y. One such algorithm is long division. If the remainder is zero the answer is 'yes', otherwise it is 'no'. A decision problem which can be solved by an algorithm is called decidable.

<span class="mw-page-title-main">Self-replication</span> Type of behavior of a dynamical system

Self-replication is any behavior of a dynamical system that yields construction of an identical or similar copy of itself. Biological cells, given suitable environments, reproduce by cell division. During cell division, DNA is replicated and can be transmitted to offspring during reproduction. Biological viruses can replicate, but only by commandeering the reproductive machinery of cells through a process of infection. Harmful prion proteins can replicate by converting normal proteins into rogue forms. Computer viruses reproduce using the hardware and software already present on computers. Self-replication in robotics has been an area of research and a subject of interest in science fiction. Any self-replicating mechanism which does not make a perfect copy (mutation) will experience genetic variation and will create variants of itself. These variants will be subject to natural selection, since some will be better at surviving in their current environment than others and will out-breed them.

<span class="mw-page-title-main">Wang tile</span> Square tiles with a color on each edge

Wang tiles, first proposed by mathematician, logician, and philosopher Hao Wang in 1961, are a class of formal systems. They are modelled visually by square tiles with a color on each side. A set of such tiles is selected, and copies of the tiles are arranged side by side with matching colors, without rotating or reflecting them.

<span class="mw-page-title-main">Contradiction</span> Logical incompatibility between two or more propositions

In traditional logic, a contradiction occurs when a proposition conflicts either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's law of noncontradiction states that "It is impossible that the same thing can at the same time both belong and not belong to the same object and in the same respect."

In mathematics and logic, an axiomatic system is any set of primitive notions and axioms to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system. A formal theory is an axiomatic system that describes a set of sentences that is closed under logical implication. A formal proof is a complete rendition of a mathematical proof within a formal system.

<span class="mw-page-title-main">Minimal surface</span> Surface that locally minimizes its area

In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature.

von Neumann architecture Computer architecture where code and data share a common bus

The von Neumann architecture—also known as the von Neumann model or Princeton architecture—is a computer architecture based on a 1945 description by John von Neumann, and by others, in the First Draft of a Report on the EDVAC. The document describes a design architecture for an electronic digital computer with these components:

<span class="mw-page-title-main">Newtonian telescope</span> Type of reflecting telescope

The Newtonian telescope, also called the Newtonian reflector or just a Newtonian, is a type of reflecting telescope invented by the English scientist Sir Isaac Newton, using a concave primary mirror and a flat diagonal secondary mirror. Newton's first reflecting telescope was completed in 1668 and is the earliest known functional reflecting telescope. The Newtonian telescope's simple design has made it very popular with amateur telescope makers.

<span class="mw-page-title-main">Multiple choice</span> Assessment that are responded by choosing correct answers from a list of choices

Multiple choice (MC), objective response or MCQ is a form of an objective assessment in which respondents are asked to select only correct answers from the choices offered as a list. The multiple choice format is most frequently used in educational testing, in market research, and in elections, when a person chooses between multiple candidates, parties, or policies.

The Lacny or Lacny cycle is a chess problem theme named after Ľudovít Lačný, the first person to demonstrate the idea in 1949.

Troubleshooting is a form of problem solving, often applied to repair failed products or processes on a machine or a system. It is a logical, systematic search for the source of a problem in order to solve it, and make the product or process operational again. Troubleshooting is needed to identify the symptoms. Determining the most likely cause is a process of elimination—eliminating potential causes of a problem. Finally, troubleshooting requires confirmation that the solution restores the product or process to its working state.

<span class="mw-page-title-main">Weasel program</span>

The weasel program or Dawkins' weasel is a thought experiment and a variety of computer simulations illustrating it. Their aim is to demonstrate that the process that drives evolutionary systems—random variation combined with non-random cumulative selection—is different from pure chance.

<span class="mw-page-title-main">Teleoperation</span> Operation of a system or machine at a distance

Teleoperation indicates operation of a system or machine at a distance. It is similar in meaning to the phrase "remote control" but is usually encountered in research, academia and technology. It is most commonly associated with robotics and mobile robots but can be applied to a whole range of circumstances in which a device or machine is operated by a person from a distance.

<span class="mw-page-title-main">Minimally conscious state</span> Disorder of Consciousness where overt signs of awareness are preserved

A minimally conscious state or MCS is a disorder of consciousness distinct from persistent vegetative state and locked-in syndrome. Unlike persistent vegetative state, patients with MCS have partial preservation of conscious awareness. MCS is a relatively new category of disorders of consciousness. The natural history and longer term outcome of MCS have not yet been thoroughly studied. The prevalence of MCS was estimated to be 9 times of PVS cases, or between 112,000 and 280,000 in the US by year 2000.

<span class="mw-page-title-main">Barometer question</span> Exam question with one intended answer but many correct answers

The barometer question is an example of an incorrectly designed examination question demonstrating functional fixedness that causes a moral dilemma for the examiner. In its classic form, popularized by American test designer professor Alexander Calandra in the 1960s, the question asked the student to "show how it is possible to determine the height of a tall building with the aid of a barometer." The examiner was confident that there was one, and only one, correct answer, which is found by measuring the difference in pressure at the top and bottom of the building and solving for height. Contrary to the examiner's expectations, the student responded with a series of completely different answers. These answers were also correct, yet none of them proved the student's competence in the specific academic field being tested.

Functional fixedness is a cognitive bias that limits a person to use an object only in the way it is traditionally used. The concept of functional fixedness originated in Gestalt psychology, a movement in psychology that emphasizes holistic processing. Karl Duncker defined functional fixedness as being a mental block against using an object in a new way that is required to solve a problem. This "block" limits the ability of an individual to use components given to them to complete a task, as they cannot move past the original purpose of those components. For example, if someone needs a paperweight, but they only have a hammer, they may not see how the hammer can be used as a paperweight. Functional fixedness is this inability to see a hammer's use as anything other than for pounding nails; the person couldn't think to use the hammer in a way other than in its conventional function.

<span class="mw-page-title-main">Von Neumann universal constructor</span> Self-replicating cellular automaton

John von Neumann's universal constructor is a self-replicating machine in a cellular automaton (CA) environment. It was designed in the 1940s, without the use of a computer. The fundamental details of the machine were published in von Neumann's book Theory of Self-Reproducing Automata, completed in 1966 by Arthur W. Burks after von Neumann's death. While typically not as well known as von Neumann's other work, it is regarded as foundational for automata theory, complex systems, and artificial life. Indeed, Nobel Laureate Sydney Brenner considered Von Neumann's work on self-reproducing automata central to biological theory as well, allowing us to "discipline our thoughts about machines, both natural and artificial."

<span class="mw-page-title-main">Social system</span> Patterned series of interrelationships existing between people, groups, and institutions

In sociology, a social system is the patterned network of relationships constituting a coherent whole that exist between individuals, groups, and institutions. It is the formal structure of role and status that can form in a small, stable group. An individual may belong to multiple social systems at once; examples of social systems include nuclear family units, communities, cities, nations, college campuses, religions, corporations, and industries. The organization and definition of groups within a social system depend on various shared properties such as location, socioeconomic status, race, religion, societal function, or other distinguishable features.

The Perhapsatron was an early fusion power device based on the pinch concept in the 1950s. Conceived by James (Jim) Tuck while working at Los Alamos National Laboratory (LANL), he whimsically named the device on the chance that it might be able to create fusion reactions.

In linguistics, the autonomy of syntax is the assumption that syntax is arbitrary and self-contained with respect to meaning, semantics, pragmatics, discourse function, and other factors external to language. The autonomy of syntax is advocated by linguistic formalists, and in particular by generative linguistics, whose approaches have hence been called autonomist linguistics.