Minimum effort game

Last updated

In Game theory, the minimum effort game or weakest link game is a game in which each person decides how much effort to put in and is rewarded based on the least amount of effort anyone puts in. [1] It is assumed that the reward per unit of effort is greater than the cost per unit effort, otherwise there would be no reason to put in effort.

Contents

Examples

Nash equilibria

If there are n players, it costs each player c dollars to put in one unit of effort, and each player is rewarded b dollars for each unit of effort the laziest person put in, then the only pure-strategy Nash equilibrium is each player putting in the same amount of effort, because putting more effort costs more money without extra rewards, and because putting less effort reduces the reward earned. [2]

The other Nash equilibrium is when each person chooses two numbers and puts in units of effort with probability and units of effort with probability .

In practice

The amount of effort players put in depends on the amount of effort they think other players will put in. [3] In addition, some players will put more effort than expected in an attempt to get others to put in more effort.

Related Research Articles

In game theory, the Nash equilibrium is the most commonly-used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy. The idea of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to his model of competition in an oligopoly.

<span class="mw-page-title-main">St. Petersburg paradox</span> Paradox involving a game with repeated coin flipping

The St. Petersburg paradox or St. Petersburg lottery is a paradox involving the game of flipping a coin where the expected payoff of the theoretical lottery game approaches infinity but nevertheless seems to be worth only a very small amount to the participants. The St. Petersburg paradox is a situation where a naïve decision criterion that takes only the expected value into account predicts a course of action that presumably no actual person would be willing to take. Several resolutions to the paradox have been proposed, including the impossible amount of money a casino would need to continue the game indefinitely.

In game theory, the best response is the strategy which produces the most favorable outcome for a player, taking other players' strategies as given. The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response to the other players' strategies.

Kuhn poker is a simplified form of poker developed by Harold W. Kuhn as a simple model zero-sum two-player imperfect-information game, amenable to a complete game-theoretic analysis. In Kuhn poker, the deck includes only three playing cards, for example, a King, Queen, and Jack. One card is dealt to each player, which may place bets similarly to a standard poker. If both players bet or both players pass, the player with the higher card wins, otherwise, the betting player wins. It was recently solved using Perfect Bayesian Equilibrium notions by Loriente and Diez (2023).

In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.

In game theory, the unscrupulous diner's dilemma is an n-player prisoner's dilemma. The situation imagined is that several people go out to eat, and before ordering, they agree to split the cost equally between them. Each diner must now choose whether to order the costly or cheap dish. It is presupposed that the costlier dish is better than the cheaper, but not by enough to warrant paying the difference when eating alone. Each diner reasons that, by ordering the costlier dish, the extra cost to their own bill will be small, and thus the better dinner is worth the money. However, all diners having reasoned thus, they each end up paying for the costlier dish, which by assumption, is worse than had they each ordered the cheaper.

In game theory, a repeated game is an extensive form game that consists of a number of repetitions of some base game. The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of their current action on the future actions of other players; this impact is sometimes called their reputation. Single stage game or single shot game are names for non-repeated games.

In game theory, the purification theorem was contributed by Nobel laureate John Harsanyi in 1973. The theorem aims to justify a puzzling aspect of mixed strategy Nash equilibria: that each player is wholly indifferent amongst each of the actions he puts non-zero weight on, yet he mixes them so as to make every other player also indifferent.

Risk dominance and payoff dominance are two related refinements of the Nash equilibrium (NE) solution concept in game theory, defined by John Harsanyi and Reinhard Selten. A Nash equilibrium is considered payoff dominant if it is Pareto superior to all other Nash equilibria in the game.1 When faced with a choice among equilibria, all players would agree on the payoff dominant equilibrium since it offers to each player at least as much payoff as the other Nash equilibria. Conversely, a Nash equilibrium is considered risk dominant if it has the largest basin of attraction. This implies that the more uncertainty players have about the actions of the other player(s), the more likely they will choose the strategy corresponding to it.

In game theory, a stochastic game, introduced by Lloyd Shapley in the early 1950s, is a repeated game with probabilistic transitions played by one or more players. The game is played in a sequence of stages. At the beginning of each stage the game is in some state. The players select actions and each player receives a payoff that depends on the current state and the chosen actions. The game then moves to a new random state whose distribution depends on the previous state and the actions chosen by the players. The procedure is repeated at the new state and play continues for a finite or infinite number of stages. The total payoff to a player is often taken to be the discounted sum of the stage payoffs or the limit inferior of the averages of the stage payoffs.

<span class="mw-page-title-main">All-pay auction</span>

In economics and game theory, an all-pay auction is an auction in which every bidder must pay regardless of whether they win the prize, which is awarded to the highest bidder as in a conventional auction. As shown by Riley and Samuelson (1981), equilibrium bidding in an all pay auction with private information is revenue equivalent to bidding in a sealed high bid or open ascending price auction.

<span class="mw-page-title-main">Revenue equivalence</span>

Revenue equivalence is a concept in auction theory that states that given certain conditions, any mechanism that results in the same outcomes also has the same expected revenue.

The Price of Anarchy (PoA) is a concept in economics and game theory that measures how the efficiency of a system degrades due to selfish behavior of its agents. It is a general notion that can be extended to diverse systems and notions of efficiency. For example, consider the system of transportation of a city and many agents trying to go from some initial location to a destination. Here, efficiency means the average time for an agent to reach the destination. In the 'centralized' solution, a central authority can tell each agent which path to take in order to minimize the average travel time. In the 'decentralized' version, each agent chooses its own path. The Price of Anarchy measures the ratio between average travel time in the two cases.

A continuous game is a mathematical concept, used in game theory, that generalizes the idea of an ordinary game like tic-tac-toe or checkers (draughts). In other words, it extends the notion of a discrete game, where the players choose from a finite set of pure strategies. The continuous game concepts allows games to include more general sets of pure strategies, which may be uncountably infinite.

<span class="mw-page-title-main">Game without a value</span>

In the mathematical theory of games, in particular the study of zero-sum continuous games, not every game has a minimax value. This is the expected value to one of the players when both play a perfect strategy.

In game theory, the price of stability (PoS) of a game is the ratio between the best objective function value of one of its equilibria and that of an optimal outcome. The PoS is relevant for games in which there is some objective authority that can influence the players a bit, and maybe help them converge to a good Nash equilibrium. When measuring how efficient a Nash equilibrium is in a specific game we often also talk about the price of anarchy (PoA), which is the ratio between the worst objective function value of one of its equilibria and that of an optimal outcome.

The Vanna–Volga method is a mathematical tool used in finance. It is a technique for pricing first-generation exotic options in foreign exchange market (FX) derivatives.

Inductive probability attempts to give the probability of future events based on past events. It is the basis for inductive reasoning, and gives the mathematical basis for learning and the perception of patterns. It is a source of knowledge about the world.

In labour economics, Shapiro–Stiglitz theory of efficiency wages is an economic theory of wages and unemployment in labour market equilibrium. It provides a technical description of why wages are unlikely to fall and how involuntary unemployment appears. This theory was first developed by Carl Shapiro and Joseph Stiglitz.

In economics, a winner-take-all market is a market in which a product or service that is favored over the competitors, even if only slightly, receives a disproportionately large share of the revenues for that class of products or services. It occurs when the top producer of a product earns a lot more than their competitors. Examples of winner-take-all markets include the sports and entertainment markets.

References

  1. 1 2 Riedl, Arno; Rohde, Ingrid M. T.; Strobel, Martin (April 2016). "Efficient Coordination in Weakest-Link Games" (PDF). The Review of Economic Studies. 83 (2): 737–767. doi:10.1093/restud/rdv040. ISSN   0034-6527.
  2. Cartwright, Edward (9 June 2018). "The Optimal Strategy in the Minimum Effort Game" (PDF). Games. 9 (3). MDPI: 42. doi: 10.3390/g9030042 . ISSN   2073-4336.
  3. Feri, Francesco; Gantner, Anita; Moffatt, Peter G.; Erharter, Dominik (13 October 2022). "Leading to efficient coordination: Individual traits, beliefs and choices in the minimum effort game". Games and Economic Behavior. 136: 403–427. doi:10.1016/j.geb.2022.10.003.