Mixture fraction () is a quantity used in combustion studies that measures the mass fraction of one stream of a mixture formed by two feed streams, one the fuel stream and the other the oxidizer stream. [1] [2] Both the feed streams are allowed to have inert gases. [3] The mixture fraction definition is usually normalized such that it approaches unity in the fuel stream and zero in the oxidizer stream. [4] The mixture-fraction variable is commonly used as a replacement for the physical coordinate normal to the flame surface, in nonpremixed combustion.
Assume a two-stream problem having one portion of the boundary the fuel stream with fuel mass fraction and another portion of the boundary the oxidizer stream with oxidizer mass fraction . For example, if the oxidizer stream is air and the fuel stream contains only the fuel, then and . In addition, assume there is no oxygen in the fuel stream and there is no fuel in the oxidizer stream. Let be the mass of oxygen required to burn unit mass of fuel (for hydrogen gas, and for alkanes, [5] ). Introduce the scaled mass fractions as and . Then the mixture fraction is defined as
where
is the stoichiometry parameter, also known as the overall equivalence ratio. On the fuel-stream boundary, and since there is no oxygen in the fuel stream, and hence . Similarly, on the oxidizer-stream boundary, and so that . Anywhere else in the mixing domain, . The mixture fraction is a function of both the spatial coordinates and the time , i.e.,
Within the mixing domain, there are level surfaces where fuel and oxygen are found to be mixed in stoichiometric proportion. This surface is special in combustion because this is where a diffusion flame resides. Constant level of this surface is identified from the equation , where is called as the stoichiometric mixture fraction which is obtained by setting (since if they were react to consume fuel and oxygen, only on the stoichiometric locations both fuel and oxygen will be consumed completely) in the definition of to obtain
When there is no chemical reaction, or considering the unburnt side of the flame, the mass fraction of fuel and oxidizer are and (the subscript denotes unburnt mixture). This allows to define a local fuel-air equivalence ratio
The local equivalence ratio is an important quantity for partially premixed combustion. The relation between local equivalence ratio and mixture fraction is given by
The stoichiometric mixture fraction defined earlier is the location where the local equivalence ratio .
In turbulent combustion, a quantity called the scalar dissipation rate with dimensional units of that of an inverse time is used to define a characteristic diffusion time. Its definition is given by
where is the diffusion coefficient of the scalar. Its stoichiometric value is .
Amable Liñán introduced a modified mixture fraction in 1991 [6] [7] that is appropriate for systems where the fuel and oxidizer have different Lewis numbers. If and are the Lewis number of the fuel and oxidizer, respectively, then Liñán's mixture fraction is defined as
where
The stoichiometric mixture fraction is given by
Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion, the heat from a flame may provide enough energy to make the reaction self-sustaining. The study of combustion is known as combustion science.
Stoichiometry is the relationship between the weights of reactants and products before, during, and following chemical reactions.
Phi is the twenty-first letter of the Greek alphabet.
A slurry is a mixture of denser solids suspended in liquid, usually water. The most common use of slurry is as a means of transporting solids or separating minerals, the liquid being a carrier that is pumped on a device such as a centrifugal pump. The size of solid particles may vary from 1 micrometre up to hundreds of millimetres. The particles may settle below a certain transport velocity and the mixture can behave like a Newtonian or non-Newtonian fluid. Depending on the mixture, the slurry may be abrasive and/or corrosive.
Large eddy simulation (LES) is a mathematical model for turbulence used in computational fluid dynamics. It was initially proposed in 1963 by Joseph Smagorinsky to simulate atmospheric air currents, and first explored by Deardorff (1970). LES is currently applied in a wide variety of engineering applications, including combustion, acoustics, and simulations of the atmospheric boundary layer.
Air–fuel ratio (AFR) is the mass ratio of air to a solid, liquid, or gaseous fuel present in a combustion process. The combustion may take place in a controlled manner such as in an internal combustion engine or industrial furnace, or may result in an explosion ,The air–fuel ratio determines whether a mixture is combustible at all, how much energy is being released, and how much unwanted pollutants are produced in the reaction. Typically a range of fuel to air ratios exists, outside of which ignition will not occur. These are known as the lower and upper explosive limits.
A premixed flame is a flame formed under certain conditions during the combustion of a premixed charge of fuel and oxidiser. Since the fuel and oxidiser—the key chemical reactants of combustion—are available throughout a homogeneous stoichiometric premixed charge, the combustion process once initiated sustains itself by way of its own heat release. The majority of the chemical transformation in such a combustion process occurs primarily in a thin interfacial region which separates the unburned and the burned gases. The premixed flame interface propagates through the mixture until the entire charge is depleted. The propagation speed of a premixed flame is known as the flame speed which depends on the convection-diffusion-reaction balance within the flame, i.e. on its inner chemical structure. The premixed flame is characterised as laminar or turbulent depending on the velocity distribution in the unburned pre-mixture.
In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.
In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.
In fluid dynamics, eddy diffusion, eddy dispersion, or turbulent diffusion is a process by which fluid substances mix together due to eddy motion. These eddies can vary widely in size, from subtropical ocean gyres down to the small Kolmogorov microscales, and occur as a result of turbulence. The theory of eddy diffusion was first developed by Sir Geoffrey Ingram Taylor.
In thermodynamics, an apparent molar property of a solution component in a mixture or solution is a quantity defined with the purpose of isolating the contribution of each component to the non-ideality of the mixture. It shows the change in the corresponding solution property per mole of that component added, when all of that component is added to the solution. It is described as apparent because it appears to represent the molar property of that component in solution, provided that the properties of the other solution components are assumed to remain constant during the addition. However this assumption is often not justified, since the values of apparent molar properties of a component may be quite different from its molar properties in the pure state.
The simple chemical reacting system (SCRS) is one of the combustion models for computational fluid dynamics. This model helps us to determine the process of combustion which is a vital phenomenon used in many engineering applications like aircraft engines, internal combustion engines, rocket engines, industrial furnaces, and power station combustors. The simple chemical reacting system (SCRS) refers the global nature of the combustion process considering only the final species concentrations. The detailed kinetics of the process is generally neglected and it postulates that combustion does proceed via a global one-step without intermediates. Infinitely fast chemical reaction is assumed with oxidants reacting in stoichiometric proportions to form products. SCRS considers the reaction to be irreversible i.e. rate of reverse reaction is presumed to be very low.
In combustion, a Burke–Schumann flame is a type of diffusion flame, established at the mouth of the two concentric ducts, by issuing fuel and oxidizer from the two region respectively. It is named after S.P. Burke and T.E.W. Schumann, who were able to predict the flame height and flame shape using their simple analysis of infinitely fast chemistry in 1928 at the First symposium on combustion.
Liñán diffusion flame theory is a theory developed by Amable Liñán in 1974 to explain the diffusion flame structure using activation energy asymptotics and Damköhler number asymptotics. Liñán used counterflowing jets of fuel and oxidizer to study the diffusion flame structure, analyzing for the entire range of Damköhler number. His theory predicted four different types of flame structure as follows,
In combustion, Emmons problem describes the flame structure which develops inside the boundary layer, created by a flowing oxidizer stream on flat fuel surfaces. The problem was first studied by Howard Wilson Emmons in 1956. The flame is of diffusion flame type because it separates fuel and oxygen by a flame sheet. The corresponding problem in a quiescent oxidizer environment is known as Clarke–Riley diffusion flame.
In combustion, Burke–Schumann limit, or large Damköhler number limit, is the limit of infinitely fast chemistry, named after S.P. Burke and T.E.W. Schumann, due to their pioneering work on Burke–Schumann flame. One important conclusion of infinitely fast chemistry is the non-co-existence of fuel and oxidizer simultaneously except in a thin reaction sheet. The inner structure of the reaction sheet is described by Liñán's equation.
Batch normalization is a method used to make training of artificial neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015.
In the study of diffusion flame, Liñán's equation is a second-order nonlinear ordinary differential equation which describes the inner structure of the diffusion flame, first derived by Amable Liñán in 1974. The equation reads as
In combustion, Liñán's flame speed provides the estimate of the upper limit for edge-flame propagation velocity, when the flame curvature is small. The formula is named after Amable Liñán. When the flame thickness is much smaller than the mixing-layer thickness through which the edge flame is propagating, a flame speed can be defined as the propagating speed of the flame front with respect to a region far ahead of the flame. For small flame curvatures, each point of the flame front propagates at a laminar planar premixed speed that depends on a local equivalence ratio just ahead of the flame. However, the flame front as a whole do not propagate at a speed since the mixture ahead of the flame front undergoes thermal expansion due to the heating by the flame front, that aids the flame front to propagate faster with respect to the region far ahead from the flame front. Liñán estimated the edge flame speed to be:
The Shvab–Zeldovich formulation is an approach to remove the chemical-source terms from the conservation equations for energy and chemical species by linear combinations of independent variables, when the conservation equations are expressed in a common form. Expressing conservation equations in common form often limits the range of applicability of the formulation. The method was first introduced by V. A. Shvab in 1948 and by Yakov Zeldovich in 1949.