Mode control panel

Last updated

In aviation, the mode control panel (MCP) is an instrument panel that controls an advanced autopilot and related systems such as an automated flight-director system (AFDS).

Aviation Design, development, production, operation and use of aircraft

Aviation, or air transport, refers to the activities surrounding mechanical flight and the aircraft industry. Aircraft includes fixed-wing and rotary-wing types, morphable wings, wing-less lifting bodies, as well as lighter-than-air craft such as balloons and airships.

Autopilot system to maintain vehicle trajectory in lieu of direct operator command

An autopilot is a system used to control the trajectory of an aircraft without constant 'hands-on' control by a human operator being required. Autopilots do not replace human operators, but instead they assist them in controlling the aircraft. This allows them to focus on broader aspects of operations such as monitoring the trajectory, weather and systems.

The MCP contains controls that allow the crew of the aircraft to select which parts of the aircraft's flight are to be controlled automatically. In modern MCPs, there are many different modes of automation available. The MCP can be used to instruct the autopilot to hold a specific altitude, to change altitudes at a specific rate, to hold a specific heading, to turn to a new heading, to follow the directions of a flight management computer (FMC), and so on. The MCP is actually independent of the autopilotit simply sets the mode in which the autopilot operates, but the autopilot itself (e.g., an AFDS) is a separate aircraft system. The MCP often interacts with both the AFDS or autopilot and the FMC(s).

Flight management system component of a modern aircraft avionics

A flight management system (FMS) is a fundamental component of a modern airliner's avionics. An FMS is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern civilian aircraft no longer carry flight engineers or navigators. A primary function is in-flight management of the flight plan. Using various sensors to determine the aircraft's position, the FMS can guide the aircraft along the flight plan. From the cockpit, the FMS is normally controlled through a Control Display Unit (CDU) which incorporates a small screen and keyboard or touchscreen. The FMS sends the flight plan for display to the Electronic Flight Instrument System (EFIS), Navigation Display (ND), or Multifunction Display (MFD). The FMS can be summarised as being a dual system consisting of the Flight Management Computer (FMC), CDU and a cross talk bus.

MCPs are usually found in advanced aircraft intended for commercial use, especially jet airliners. They are often mounted on the glare shield, a small panel that overhangs the main instrument panel of the aircraft and also functions as a shield against outside glare.

Airliner aircraft designed for commercial transportation of passengers and cargo

An airliner is a type of aircraft for transporting passengers and air cargo. Such aircraft are most often operated by airlines. Although the definition of an airliner can vary from country to country, an airliner is typically defined as an aeroplane intended for carrying multiple passengers or cargo in commercial service. The largest of them are wide-body jets which are called also twin-aisle because they generally have two separate aisles running from the front to the back of the passenger cabin. These are usually used for long-haul flights between airline hubs and major cities. A smaller, more common class of airliners is the narrow-body or single-aisle. These are generally used for short to medium-distance flights with fewer passengers than their wide-body counterparts.

See also

Related Research Articles

Instrument flight rules one set of regulations governing all aspects of civil aviation aircraft operations

Instrument flight rules (IFR) is one of two sets of regulations governing all aspects of civil aviation aircraft operations; the other is visual flight rules (VFR).

Flight instruments instrument in the cockpit of an aircraft that provides the pilot with information about the flight situation of that aircraft

Flight instruments are the instruments in the cockpit of an aircraft that provide the pilot with information about the flight situation of that aircraft, such as altitude, airspeed and direction. They improve safety by allowing the pilot to fly the aircraft in level flight, and make turns, without a reference outside the aircraft such as the horizon. Visual flight rules (VFR) require an airspeed indicator, an altimeter, and a compass or other suitable magnetic direction indicator. Instrument flight rules (IFR) additionally require a gyroscopic pitch-bank, direction and rate of turn indicator, plus a slip-skid indicator, adjustable altimeter, and a clock. Flight into Instrument meteorological conditions (IMC) require radio navigation instruments for precise takeoffs and landings.

Cockpit area, usually near the front of an aircraft, from which a pilot controls the aircraft

A cockpit or flight deck is the area, usually near the front of an aircraft or spacecraft, from which a pilot controls the aircraft.

A waypoint is an intermediate point or place on a route or line of travel, a stopping point or point at which course is changed, first use of the term tracing to 1880. In modern terms, it most often refers to coordinates which specify one's position on the globe at the end of each "leg" (stage) of an air flight or sea passage, the generation and checking of which are generally done computationally.

MCP may refer to:

Electronic flight instrument system

An electronic flight instrument system (EFIS) is a flight deck instrument display system that displays flight data electronically rather than electromechanically. An EFIS normally consists of a primary flight display (PFD), multi-function display (MFD), and an engine indicating and crew alerting system (EICAS) display. Early EFIS models used cathode ray tube (CRT) displays, but liquid crystal displays (LCD) are now more common. The complex electromechanical attitude director indicator (ADI) and horizontal situation indicator (HSI) were the first candidates for replacement by EFIS. Now, however, few flight deck instruments cannot be replaced by an electronic display.

Garmin G1000

The Garmin G1000 is an integrated flight instrument system typically composed of two display units, one serving as a primary flight display, and one as a multi-function display. Manufactured by Garmin, it serves as a replacement for most conventional flight instruments and avionics.

Autoland

In aviation, autoland describes a system that fully automates the landing procedure of an aircraft's flight, with the flight crew supervising the process. Such systems enable airliners to land in weather conditions that would otherwise be dangerous or impossible to operate in.

Air data computer

An air data computer (ADC) is an essential avionics component found in modern glass cockpits. This computer, rather than individual instruments, can determine the calibrated airspeed, Mach number, altitude, and altitude trend data from an aircraft's pitot-static system. In some very high speed aircraft such as the Space Shuttle, equivalent airspeed is calculated instead of calibrated airspeed.

Primary flight display

A primary flight display or PFD is a modern aircraft instrument dedicated to flight information. Much like multi-function displays, primary flight displays are built around a Liquid-crystal display or CRT display device. Representations of older six pack or "steam gauge" instruments are combined on one compact display, simplifying pilot workflow and streamlining cockpit layouts.

A Takeoff/Go-around switch is a switch on the autothrottle of modern large aircraft, with two modes: takeoff (TO) and go-around (GA). The mode is dependent on the phase of flight; usually, on approach to land, the autopilot will be set to approach mode, therefore if the TO/GA switch is pressed it will activate the go-around mode of the autothrottle; conversely, when take-off is set on the autopilot, the switch activates take off mode of the autothrottle. On Boeing aircraft TO/GA modes are selected by a separate switch near the throttle levers, but on Airbus aircraft it is activated by pushing the thrust levers fully forward to the TO/GA detent.

An aeronautical chart is a map designed to assist in navigation of aircraft, much as nautical charts do for watercraft, or a roadmap for drivers. Using these charts and other tools, pilots are able to determine their position, safe altitude, best route to a destination, navigation aids along the way, alternative landing areas in case of an in-flight emergency, and other useful information such as radio frequencies and airspace boundaries. There are charts for all land masses on Earth, and long-distance charts for trans-oceanic travel.

Transponder (aeronautics) airborne radio transponder used to transmit specific aircraft information in response to interrogation

A transponder is an electronic device that produces a response when it receives a radio-frequency interrogation. Aircraft have transponders to assist in identifying them on air traffic control radar. Collision avoidance systems have been developed to use transponder transmissions as a means of detecting aircraft at risk of colliding with each other.

Modern United States Navy carrier air operations

Modern United States Navy aircraft carrier air operations include the operation of fixed-wing and rotary aircraft on and around an aircraft carrier for performance of combat or noncombat missions. Modern United States Navy aircraft carrier flight operations are highly evolved, based on experiences dating back to 1922 with USS Langley.

SmartDeck - is a fully integrated cockpit system originally developed by L-3 Avionics Systems. and acquired in 2010 by Esterline CMC Electronics through an exclusive licensing agreement.

Flight control modes

Aircraft with fly-by-wire flight controls usually have computer-controlled flight control modes, sometimes also called flight control laws; they are an application of modes in user interfaces. Their purpose is to modify the way in which human control inputs are translated to the flight control surfaces, and ultimately its path of movement, in a way appropriate to different situations or flight regimes.

This is a list of the acronyms and abbreviations used in avionics.

Air France Flight 5672

Air France Flight 5672 (AF5672) was a domestic passenger flight from Nantes Atlantique Airport to Brest-Guipavas Airport, France, which crashed on 22 June 2003. The flight was a Bombardier CRJ100ER operated by Brit Air, a regional airline which was a subsidiary of Air France. The plane crashed during its landing phase, striking multiple obstacles and then crashed onto a road and bursting into flames. The occupants were evacuated immediately. The pilot was killed in the crash, while 23 survived. The crash was dubbed a miracle flight, as almost all of the occupants survived the crash. The media called the event the "Miracle in Brest"