Modified active gas sampling

Last updated

Modified Active Gas Sampling (MAGS) is an environmental engineering assessment technique which rapidly detects unsaturated soil source areas impacted by volatile organic compounds. The technique was developed by HSA Engineers & Scientists in Fort Myers, Florida in 2002, led by Richard Lewis, Steven Folsom, and Brian Moore. It is being used all over the United States, and has been adopted by the state of Florida in its Dry-cleaning Solvent Cleanup Program. [1]

Contents

Process

MAGS involves the extraction and analysis of soil vapor from a piezometer screened through the unsaturated soil column for the purpose of locating unsaturated zone source material. According to the MAGS Manual, written by HSA and adopted by the Florida Department of Environmental Protection, MAGS is performed "by utilizing a typical regenerative blower fitted to a temporary soil vapor extraction well, [such that]a large volume of soil can be assessed with a limited number of samples. While lacking the resolution of traditional soil sampling methods (e.g., discrete soil sampling, low flow active gas sampling, etc.), the statistical representativeness (in the sense of sample coverage) of MAGS results versus traditional methods is much greater. Moreover, the results of the assessment provide useful transport and exposure assessment information over traditional techniques. Lastly, MAGS is effective as both an initial site assessment and remedial assessment tool, in that, MAGS directly yields data required for remedial design." [2]

Advantages

MAGS is an alternative to discrete and composite soil sampling. MAGS, while it does not describe the sample with as much precision as the previously mentioned sampling methods, is more powerful statistically: it represents a larger area of a site which is more useful in determining the presence of a compound. Besides increasing the accuracy in identifying the presence compounds in the soil, MAGS also can quickly and accurately narrow down the location and spread of the compounds after a few trials. Once the location has been determined, more thorough and traditional soil borings can be done in the identified location, instead of sampling a whole site. [3]

HSA found particular success using the technique at solvent-impacted sites that were showing signs of rebound after initial remediation efforts. These rebounds are commonly the result of multiple (relatively small) release areas that had not been previously discovered with discrete soil sampling. MAGS can be useful in detecting how effectively the site had been cleaned up post-remediation. [4]

Branding

HSA Engineers & Scientists considered patenting MAGS technology, but decided to trademark MAGS instead, asking that those who use the technique credit the firm. [4]

Recognition

In 2009, HSA was recognized by the Environmental Business Journal with a Technology Merit Award in the category of remediation for the invention of MAGS technology. [1]

Related Research Articles

Brownfield land Previous industrial or commercial land, often somewhat contaminated as a result

In urban planning, brownfield land is any previously developed land that is not currently in use that may be potentially contaminated. The term is also used to describe land previously used for industrial or commercial purposes with known or suspected pollution including soil contamination due to hazardous waste.

Environmental remediation Removal of pollution from soil, groundwater etc.

Environmental remediation deals with the removal of pollution or contaminants from environmental media such as soil, groundwater, sediment, or surface water. Remedial action is generally subject to an array of regulatory requirements, and may also be based on assessments of human health and ecological risks where no legislative standards exist, or where standards are advisory.

Bioremediation

Bioremediation is a process used to treat contaminated media, including water, soil and subsurface material, by altering environmental conditions to stimulate growth of microorganisms and degrade the target pollutants. Cases where bioremediation is commonly seen is oil spills, soils contaminated with acidic mining drainage, underground pipe leaks, and crime scene cleanups. These toxic compounds are metabolized by enzymes present in microorganisms. Most bioremediation processes involve oxidation-reduction reactions where either an electron acceptor is added to stimulate oxidation of a reduced pollutant or an electron donor is added to reduce oxidized pollutants. Bioremediation is used to reduce the impact of byproducts created from anthropogenic activities, such as industrialization and agricultural processes. In many cases, bioremediation is less expensive and more sustainable than other remediation alternatives. Other remediation techniques include, thermal desorption, vitrification, air stripping, bioleaching, rhizofiltration, and soil washing. Biological treatment, bioremediation, is a similar approach used to treat wastes including wastewater, industrial waste and solid waste. The end goal of bioremediation is to remove or reduce harmful compounds to improve soil and water quality.

Toxicity characteristic leaching procedure

Toxicity characteristic leaching procedure (TCLP) is a soil sample extraction method for chemical analysis employed as an analytical method to simulate leaching through a landfill. The testing methodology is used to determine if a waste is characteristically hazardous, i.e., classified as one of the "D" listed wastes by the U.S. Environmental Protection Agency (EPA). The extract is analyzed for substances appropriate to the protocol.

Solid-phase extraction

Solid-phase extraction (SPE) is an extractive technique by which compounds that are dissolved or suspended in a liquid mixture are separated from other compounds in the mixture according to their physical and chemical properties. Analytical laboratories use solid phase extraction to concentrate and purify samples for analysis. Solid phase extraction can be used to isolate analytes of interest from a wide variety of matrices, including urine, blood, water, beverages, soil, and animal tissue.

Soil contamination Pollution of land by human-made chemicals or other alteration

Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The most common chemicals involved are petroleum hydrocarbons, polynuclear aromatic hydrocarbons, solvents, pesticides, lead, and other heavy metals. Contamination is correlated with the degree of industrialization and intensity of chemical substance. The concern over soil contamination stems primarily from health risks, from direct contact with the contaminated soil, vapour from the contaminants, or from secondary contamination of water supplies within and underlying the soil. Mapping of contaminated soil sites and the resulting cleanups are time-consuming and expensive tasks, and require expertise in geology, hydrology, chemistry, computer modeling, and GIS in Environmental Contamination, as well as an appreciation of the history of industrial chemistry.

Fragrance extraction

Fragrance extraction refers to the separation process of aromatic compounds from raw materials, using methods such as distillation, solvent extraction, expression, sieving, or enfleurage. The results of the extracts are either essential oils, absolutes, concretes, or butters, depending on the amount of waxes in the extracted product.

Phase I environmental site assessment Identifies environment contamination risk

In the United States, an environmental site assessment is a report prepared for a real estate holding that identifies potential or existing environmental contamination liabilities. The analysis, often called an ESA, typically addresses both the underlying land as well as physical improvements to the property. A proportion of contaminated sites are "brownfield sites." In severe cases, brownfield sites may be added to the National Priorities List where they will be subject to the U.S. Environmental Protection Agency's Superfund program.

Soil vapor extraction (SVE) is a physical treatment process for in situ remediation of volatile contaminants in vadose zone (unsaturated) soils. SVE is based on mass transfer of contaminant from the solid (sorbed) and liquid phases into the gas phase, with subsequent collection of the gas phase contamination at extraction wells. Extracted contaminant mass in the gas phase is treated in aboveground systems. In essence, SVE is the vadose zone equivalent of the pump-and-treat technology for groundwater remediation. SVE is particularly amenable to contaminants with higher Henry’s Law constants, including various chlorinated solvents and hydrocarbons. SVE is a well-demonstrated, mature remediation technology and has been identified by the U.S. Environmental Protection Agency (EPA) as presumptive remedy.

AMCO Chemical was a chemical distribution company located in Oakland, California. The land the company operated on is designated as a U.S. Environmental Protection Agency (EPA) Superfund cleanup site.

Contaminated land contains substances in or under the land that are actually or potentially hazardous to health or the environment. Areas with a long history of industrial production are known as brownfield land. Many such sites may be affected by their former uses such as mining, industry, chemical and oil spills and waste disposal.

Groundwater remediation is the process that is used to treat polluted groundwater by removing the pollutants or converting them into harmless products. Groundwater is water present below the ground surface that saturates the pore space in the subsurface. Globally, between 25 per cent and 40 per cent of the world's drinking water is drawn from boreholes and dug wells. Groundwater is also used by farmers to irrigate crops and by industries to produce everyday goods. Most groundwater is clean, but groundwater can become polluted, or contaminated as a result of human activities or as a result of natural conditions.

Electrical resistance heating (ERH) is an intensive in situ environmental remediation method that uses the flow of alternating current electricity to heat soil and groundwater and evaporate contaminants. Electric current is passed through a targeted soil volume between subsurface electrode elements. The resistance to electrical flow that exists in the soil causes the formation of heat; resulting in an increase in temperature until the boiling point of water at depth is reached. After reaching this temperature, further energy input causes a phase change, forming steam and removing volatile contaminants. ERH is typically more cost effective when used for treating contaminant source areas.

Environmental monitoring describes the processes and activities that need to take place to characterize and monitor the quality of the environment. Environmental monitoring is used in the preparation of environmental impact assessments, as well as in many circumstances in which human activities carry a risk of harmful effects on the natural environment. All monitoring strategies and programs have reasons and justifications which are often designed to establish the current status of an environment or to establish trends in environmental parameters. In all cases, the results of monitoring will be reviewed, analyzed statistically, and published. The design of a monitoring program must therefore have regard to the final use of the data before monitoring starts.

Pemaco is a former chemical mixing company and facility located on the Los Angeles River in Maywood, a small city in southeastern Los Angeles County, California.

In situ chemical oxidation (ISCO), a form of advanced oxidation process, is an environmental remediation technique used for soil and/or groundwater remediation to reduce the concentrations of targeted environmental contaminants to acceptable levels. ISCO is accomplished by injecting or otherwise introducing strong chemical oxidizers directly into the contaminated medium to destroy chemical contaminants in place. It can be used to remediate a variety of organic compounds, including some that are resistant to natural degradation.

In situ thermal desorption (ISTD) is an intensive thermally enhanced environmental remediation technology that uses thermal conductive heating (TCH) elements to directly transfer heat to environmental media. The ISTD/TCH process can be applied at low (<100 °C), moderate (~100 °C) and higher (>100 °C) temperature levels to accomplish the remediation of a wide variety of contaminants, both above and below the water table. ISTD/TCH is the only major in situ thermal remediation (ISTR) technology capable of achieving subsurface target treatment temperatures above the boiling point of water and is effective at virtually any depth in almost any media. TCH works in tight soils, clay layers, and soils with wide heterogeneity in permeability or moisture content that are impacted by a broad range of volatile and semi-volatile organic contaminants.

Air sparging, also known as in situ air stripping and in situ volatilization is an in situ remediation technique, used for the treatment of saturated soils and groundwater contaminated by volatile organic compounds (VOCs) like petroleum hydrocarbons which is a widespread problem for the ground water and soil health. The vapor extraction has manifested itself into becoming very successful and practical when it comes to disposing of VOCs. It was used as a new development when it came to saturated zone remediation when using air sparging. Being that the act of it was to inject a hydrocarbon-free gaseous medium into the ground where contamination was found. When it comes to situ air sparging it became an intricate phase process that was proven to be successful in Europe since the 1980s. Currently, there have been further development into bettering the engineering design and process of air sparging.

Bioremediation of petroleum contaminated environments is a process in which the biological pathways within microorganisms or plants are used to degrade or sequester toxic hydrocarbons, heavy metals, and other volatile organic compounds found within fossil fuels. Oil spills happen frequently at varying degrees along with all aspects of the petroleum supply chain, presenting a complex array of issues for both environmental and public health. While traditional cleanup methods such as chemical or manual containment and removal often result in rapid results, bioremediation is less labor-intensive, expensive, and averts chemical or mechanical damage. The efficiency and effectiveness of bioremediation efforts are based on maintaining ideal conditions, such as pH, RED-OX potential, temperature, moisture, oxygen abundance, nutrient availability, soil composition, and pollutant structure, for the desired organism or biological pathway to facilitate reactions. Three main types of bioremediation used for petroleum spills include microbial remediation, phytoremediation, and mycoremediation. Bioremediation has been implemented in various notable oil spills including the 1989 Exxon Valdez incident where the application of fertilizer on affected shoreline increased rates of biodegradation.

Thermo-Chem, Inc.

Thermo-Chem, Inc., also referred to as Thermo-Chem, is a 50-acre Superfund site located in Egelston Township near Muskegon, Michigan.

References