Molded plywood

Last updated

Molded plywood is the term for two- or three-dimensionally shaped products from multiple veneer layers that are glued together through heat and pressure in a pressing tool. The veneer layers are arranged crosswise at an angle of 90 degrees. Molded wood is used for flat furniture components such as seats, backrests and seat shells. When the veneer layers are arranged in the same direction, it is called laminated wood. It is used for armrests and chair frames. After pressing, the blanks are processed mechanically. A particular feature is the ability to produce different variations of shapes from the blanks. Due to its immense strength and low weight, molded wood is particularly suitable for interior decoration, seating furniture, bed slats, skateboards and vehicle construction.

Contents

Marcel Breuer Long Chair 1935-36 Marcel Breuer. Long Chair, ca. 1935-1936.jpg
Marcel Breuer Long Chair 1935-36

The history of molded wood

Ray and Charles Eames Lounge Chair 1956 Eameslounch.jpg
Ray and Charles Eames Lounge Chair 1956

It was an American named Isaac Cole who first took out a patent for the process of the production of molded wood in 1874. He designed a chair made of glue-laminated wooden strips. However, in 1830 the famous furniture designer Michael Thonet had already begun to experiment with the gluing of veneer layers. He only managed to produce two-dimensional deformations though. He stopped these experiments and developed the bentwood process to produce three-dimensional molded wood components made of solid wood. With the model S43, the company "Gebrüder Thonet" launched the first cantilever chair in 1931. To make the chair very comfortable without padding and to give it a light appearance, designer Mart Stam used three-dimensionally shaped plywood parts for its seat and back. The Finn Alvar Aalto was the first to deliberately implement the natural spring effect of the material when he created his model "Piamio" in the 1930s. Marcel Breuer created the Long Chair in 1935-1936 (see image). Five years later, the architects and designers Charles Eames and Eero Saarinen won a furniture design competition in New York with a three-dimensionally shaped shell. After that, Charles Eames and his wife Ray developed the spectacular plywood furniture collection for the company Herman Miller (USA). In Europe, Arne Jacobsen presented a chair with the unusual name "Ant (chair)" in 1952 that should later become a great success. Seat and back are self-supporting and connected by a narrow waist. These million-selling classics are still in production today.

Terminology

Molded plywood

Term for molded parts made from at least three thin veneers that are glued together with the grain of each running at a 90° angle to that in the next layer. This interlocking pattern greatly reduces swelling and shrinking and generates more resistance in the surface. These properties are used in two-dimensional moldings such as seats, backrests and shells. The veneer qualities can be put together for visible or upholstered molded plywood parts. The inner layers are made of less expensive peeled veneers. The top layers can be selected from peeled veneers, fine wood sliced veneers or laminates.

Laminated wood

Laminated wood is the term for moldings where the grain in all layers runs parallel. To increase the bending strength and reduce the swelling and shrinking behavior, laminated wood is interlocked with some transverse veneers for certain applications. Laminated wood is used for chair frames, cantilever side parts and armrests.

By employing laminated wood gussets (triangular), the wood joints can be pressed at the same time (see picture). The thickness of the molded parts can be varied by using partially ground interior veneers. Compared to molded plywood, the tensile strength is significantly higher.

Laminated wood Formschichtholz.jpg
Laminated wood

Production

The production process is divided into three steps. First the peeled veneer is produced, then it is pressed into molded plywood or laminated wood blanks which are subsequently processed. This results in ready to install furniture or interior design components.

In Europe, beech wood is used. It is available in large quantities from sustainably managed forests. In Northern and Eastern Europe, birch wood is frequently used. In North America, Hard maple is used. The tree trunks are harvested only during the winter, outside the sap-flow period, and need to be sprayed with water in the storage area or stored under water.

Production of veneers

For the production of veneers, the logs are steamed with hot water vapor in steam pits at 85 degrees Celsius. This makes the wood high in moisture and pliable. The next steps are the logs separation and the debarking. The lengths of the log sections are based on the veneer sizes required for the orders. In the peeling line, the peeling blade is led with high pressure against the rotating log section.

The result is a continuous veneer strip which is cut into the required widths. You can create veneers with thicknesses of 0.6 mm to 2.3 mm. The veneers are still wet when they come out and run through the drying area. Immediately after that the peeled veneers are automatically sorted according to their visual qualities. They are divided into two categories: one for visible use and one with knots and cracks that are used for moldings that will later be fully upholstered.

Pressing

When the veneer is prepared for an order, a pressing tool is incorporated into a press. The pressing tools can be made of two parts (for seats, backrests and shells) or several parts, e.g. for U-shaped moldings that also require pressure from the side. The pressing begins with glue being spread onto the veneer. The glue is made of urea-formaldehyde resin with a hardener that becomes thermosetting during the pressing process.

The so-called veneer packet is then inserted into the pressing tool that is at 100 degrees Celsius. The press is fed in. The pressing pressure is approximately 25 N/cm². The pressing time depends on the thickness of the molded parts. The thicker the part, the longer it is pressed. Shells need about 5 minutes, thicker side panels may take up to 20 minutes.

An exception is the high-frequency gluing, where the glued joint is heated via a capacitor field/ condenser field, which significantly reduces the pressing time. Therefore, this method is suitable for very thick moldings. Since veneer is a natural product, it is necessary to observe certain limitations in the pressing process. The smallest radius is dependent on the veneer thicknesses used and is 12 mm at a 90 degree angle. A taper of the moulded parts is possible.

There are hardly any limits for the possibilities of three-dimensional deformation of upholstered parts. Decorative wood allows for light deformations up to the occurrence of cracking or buckling of the veneer. What can be formed out of firm cardboard can also be made of molded plywood, since both behave in a similar way. These limits can be exceeded by the use of special 3D veneers, which are, expensive to produce and therefore entail additional costs.

Processing

The three-dimensionally shaped molded plywood blanks for seats, shells and backrests are contour milled with multi-axis CNC milling machines and bored if needed. The variety here is very high because all it takes for another contour is to write a new milling program. After sanding the edges and the assembly of the fastening mounts the parts are ready for finishing.

Molded plywood blanks for chair frames and components are automatically cut, ground and processed with fixtureless CNC milling machines. Special joining techniques can be used, such as screw, dowel, spring or mortise and tenon joints to produce pre-finished components or complete racks.

Surfaces

The surfaces of veneer cross-plywood and laminated veneer lumber can be designed in many different ways by pressing the top layers of fine wood sliced veneers, such as oak, maple, cherry, ash, walnut and other woods. Further design possibilities offer colored melamine films; decorative films, digital prints and decorative laminates (HPL / CPL) and of course the pickling and painting, either transparent or opaque. Modern water-based paint systems are used for this.

Features

Compared to other wood-based panels such as MDF or chipboard, molded plywood and laminated wood are very reliable. Therefore, they are suitable for a wide range of applications.

Strength

The tensile strength is 110-135 N/cm², depending on the type of wood. This ensures for the high load capacity and pleasant vibrations of cantilever chairs made of laminated wood, for example.

Compressive strength

With the types of wood that are used for molded wood, the compressive strength is between 50 and 62 N/cm². It guarantees long-lasting furniture that endures even frequent use as in schools, for instance.

Weather resistance

Beech wood is actually not suitable for outdoor use because it is very rapidly ruined by wood-destroying fungi. But through chemical or thermal changes it is possible to produce weather resistant molded plywood and laminated wood.

Flame retardant properties

By introducing salts in the production process, molded wood is made flame-retardant. This is an important aspect for interior design and in the creation of train seats.

Related Research Articles

<span class="mw-page-title-main">Plywood</span> Manufactured wood panel made from thin sheets of wood veneer

Plywood is a composite material manufactured from thin layers, or "plies", of wood veneer that are glued together with adjacent layers, having their wood grain rotated up to 90° to one another. It is an engineered wood from the family of manufactured boards, which include medium-density fibreboard (MDF), oriented strand board (OSB), and particle board.

<span class="mw-page-title-main">Engineered wood</span> Range of derivative wood products engineered for uniform and predictable structural performance

Engineered wood, also called mass timber, composite wood, man-made wood, or manufactured board, includes a range of derivative wood products which are manufactured by binding or fixing the strands, particles, fibres, or veneers or boards of wood, together with adhesives, or other methods of fixation to form composite material. The panels vary in size but can range upwards of 64 by 8 feet and in the case of cross-laminated timber (CLT) can be of any thickness from a few inches to 16 inches (410 mm) or more. These products are engineered to precise design specifications, which are tested to meet national or international standards and provide uniformity and predictability in their structural performance. Engineered wood products are used in a variety of applications, from home construction to commercial buildings to industrial products. The products can be used for joists and beams that replace steel in many building projects. The term mass timber describes a group of building materials that can replace concrete assemblies.

<span class="mw-page-title-main">Oriented strand board</span> Engineered wood particle board

Oriented strand board (OSB) is a type of engineered wood similar to particle board, formed by adding adhesives and then compressing layers of wood strands (flakes) in specific orientations. It was invented by Armin Elmendorf in California in 1963. OSB may have a rough and variegated surface with the individual strips of around 2.5 cm × 15 cm, lying unevenly across each other, and is produced in a variety of types and thicknesses. Though it may seem intuitive to assume that the term "chipboard" refers to oriented strand board based on its appearance, and to contrast it against particle board, the two terms are treated as synonyms by the industry, with the "chips" in chipboard being of a size that a lay person would readily judge to be "particles".

<span class="mw-page-title-main">Medium-density fibreboard</span> Engineered wood product

Medium-density fibreboard (MDF) is an engineered wood product made by breaking down hardwood or softwood residuals into wood fibres, often in a defibrator, combining it with wax and a resin binder, and forming it into panels by applying high temperature and pressure. MDF is generally denser than plywood. It is made up of separated fibres but can be used as a building material similar in application to plywood. It is stronger and denser than particle board.

<span class="mw-page-title-main">Lamination</span> Technique of fusing layers of material

Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing materials, such as plastic. A laminate is a permanently assembled object created using heat, pressure, welding, or adhesives. Various coating machines, machine presses and calendering equipment are used.

<span class="mw-page-title-main">Particle board</span> Pressed and extruded wood product

Particle board, also known as particleboard, chipboard, or low-density fiberboard, is an engineered wood product manufactured from wood chips and a synthetic resin or other suitable binder, which is pressed and extruded. Particle board is often confused with oriented strand board, a different type of fiberboard that uses machined wood flakes and offers more strength.

<span class="mw-page-title-main">Hardboard</span> Type of fiberboard (engineered wood product)

Hardboard, also called high-density fiberboard (HDF), is a type of fiberboard, which is an engineered wood product. It is used in furniture and in the construction industry.

<span class="mw-page-title-main">Laminated veneer lumber</span> Engineered Wood Product used in wood frame construction

Laminated veneer lumber (LVL) is an engineered wood product that uses multiple layers of thin wood assembled with adhesives. It is typically used for headers, beams, rimboard, and edge-forming material. LVL offers several advantages over typical milled lumber: Made in a factory under controlled specifications, it is stronger, straighter, and more uniform. Due to its composite nature, it is much less likely than conventional lumber to warp, twist, bow, or shrink. LVL is a type of structural composite lumber, comparable to glued laminated timber (glulam) but with a higher allowable stress.

A gunstock or often simply stock, the back portion of which is also known as a shoulder stock, a buttstock, or simply a butt, is a part of a long gun that provides structural support, to which the barrel, action, and firing mechanism are attached. The stock also provides a means for the shooter to firmly brace the gun and easily aim with stability by being held against the user's shoulder when shooting the gun, and helps to counter muzzle rise by transmitting recoil straight into the shooter's body.

<span class="mw-page-title-main">Kitchen cabinet</span> Kitchen furniture

Kitchen cabinets are the built-in furniture installed in many kitchens for storage of food, cooking equipment, and often silverware and dishes for table service. Appliances such as refrigerators, dishwashers, and ovens are often integrated into kitchen cabinetry. There are many options for cabinets available at present.

<span class="mw-page-title-main">Eames Lounge Chair</span> Chair designed by Charles and Ray Eames

The Eames Lounge Chair and Ottoman is a lounge chair and ottoman manufactured and sold by American furniture company Herman Miller. Introduced in 1956, the Eames Lounge Chair was designed by Charles and Ray Eames and is made of molded plywood and leather. It was the first chair the Eameses designed for the high-end market. The Eames Lounge Chair and Ottoman are part of the permanent collection of New York's Museum of Modern Art.

<span class="mw-page-title-main">Upholstery frame</span>

In furniture-making, the upholstery frame of a piece of furniture gives the structural support and determines the basic shape of the upholstered furniture. The frame may be a basic piece of wooden furniture prior to its being upholstered. Like a finished piece of furniture prior to the upholstering, the frame establishes the final quality, including its durability, and sets limits upon the final design, padding, cushioning, or cover.

<span class="mw-page-title-main">Wood veneer</span> Thin slices of wood

In woodworking, veneer refers to thin slices of wood and sometimes bark that typically are glued onto core panels to produce flat panels such as doors, tops and panels for cabinets, parquet floors and parts of furniture. They are also used in marquetry. Plywood consists of three or more layers of veneer. Normally, each is glued with its grain at right angles to adjacent layers for strength. Veneer beading is a thin layer of decorative edging placed around objects, such as jewelry boxes. Veneer is also used to replace decorative papers in wood veneer HPL.

<span class="mw-page-title-main">Eames Lounge Chair Wood</span> Chair designed by Charles and Ray Eames

The Eames Lounge Chair Wood (LCW) is a low seated easy chair designed by husband and wife team Charles and Ray Eames.

<span class="mw-page-title-main">Wood flooring</span> Product manufactured from timber that is designed for use as flooring

Wood flooring is any product manufactured from timber that is designed for use as flooring, either structural or aesthetic. Wood is a common choice as a flooring material and can come in various styles, colors, cuts, and species. Bamboo flooring is often considered a form of wood flooring, although it is made from bamboo rather than timber.

<span class="mw-page-title-main">I-joist</span>

An engineered wood joist, more commonly known as an I-joist, is a product designed to eliminate problems that occur with conventional wood joists. Invented in 1969, the I-joist is an engineered wood product that has great strength in relation to its size and weight. The biggest notable difference from dimensional lumber is that the I-joist carries heavy loads with less lumber than a dimensional solid wood joist. As of 2005, approximately 50% of all wood light framed floors used I-joists. I-joists were designed to help eliminate typical problems that come with using solid lumber as joists.

Three-dimensional composites use fiber preforms constructed from yarns or tows arranged into complex three-dimensional structures. These can be created from a 3D weaving process, a 3D knitting process, a 3D braiding process, or a 3D lay of short fibers. A resin is applied to the 3D preform to create the composite material. Three-dimensional composites are used in highly engineered and highly technical applications in order to achieve complex mechanical properties. Three-dimensional composites are engineered to react to stresses and strains in ways that are not possible with traditional composite materials composed of single direction tows, or 2D woven composites, sandwich composites or stacked laminate materials.

Laminate panel is a type of manufactured timber made from thin sheets of substrates or wood veneer. It is similar to the more widely used plywood, except that it has a plastic, protective layer on one or both sides. Laminate panels are used instead of plywood because of their resistance to impact, weather, moisture, shattering in cold (ductility), and chemicals.

<span class="mw-page-title-main">The Round Chair</span> Chair designed by Hans J. Wegner

The Round Chair is an armchair designed by Hans Wegner in 1949. The chair was a collaboration of Wegner and the now-defunct furniture maker Johannes Hansen. It is still in production today by the Danish furniture manufacturer PP Møbler.

References