Molybdenum blue

Last updated
A sample of one kind of molybdenum blue with the formula Na15[Mo126Mo28O462H14(H2O)70]
.mw-parser-output .frac{white-space:nowrap}.mw-parser-output .frac .num,.mw-parser-output .frac .den{font-size:80%;line-height:0;vertical-align:super}.mw-parser-output .frac .den{vertical-align:sub}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}
1/2 [Mo124Mo28O457H14(H2O)68]
1/2. Sample of Molybdenum Blue.jpg
A sample of one kind of molybdenum blue with the formula Na15[Mo126Mo28O462H14(H2O)70]12 [Mo124Mo28O457H14(H2O)68]12.

Molybdenum blue is a term applied to:

The "heteropoly-molybdenum blues", are used extensively in analytical chemistry and as catalysts. The formation of "isopoly-molybdenum blues" which are intense blue has been used as a sensitive test for reducing reagents. They have recently been shown to contain very large anionic species based on the so-called "big wheel" containing 154 Mo atoms, with a formula [Mo154O462H14(H2O)70]14−. [2]

Contents

The molybdenum blue pigment is historically documented [3] but may not be in use today.

Heteropoly-molybdenum blues

The first heteropoly molybdate and first heteropolymetallate, yellow ammonium phosphomolybdate, (NH4)3PMo12O40 was discovered by Berzelius in 1826. [4] The phosphorus atom in the anion is termed the heteroatom, other heteroatoms are silicon and arsenic. The heteropoly-molybdenum blues have structures based on the Keggin structure. The blue colour arises because the near-colourless anion, such as the phosphomolybdate anion, PMo
12
O3−
40
, can accept more electrons (i.e. be reduced) to form an intensely coloured mixed-valence complex. This can occur in one electron or two electron steps. [4] The reduction process is reversible and the structure of the anion is essentially unchanged. [4]

PMoVI
12
O3−
40
+ 4 e ⇌ PMoV
4
MoVI
8
O7−
40

The structure of the anion, PMoV
4
MoVI
8
O7−
40
, has been determined in the solid state and is a β-isomer (i.e. with one of the four groups of edge-shared octahedra on the α-Keggin ion rotated through 60°). [5] Similar structures have been found with silicon, germanium or arsenic heteroatoms. [4]

The intense blue colour of the reduced anion is the basis for the use of heteropoly-molybdenum blues in quantitative and qualitative analytical techniques. This property is exploited as follows:

Uses in quantitative analysis

Colorimetric determination of P, As, Si and Ge

The determination of phosphorus, arsenic, silicon and germanium are examples of the use of heteropoly-molybdenum blue in analytical chemistry. The following example describes the determination of phosphorus. A sample containing the phosphate is mixed with an acid solution of MoVI, for example ammonium molybdate, to produce PMo
12
O3−
40
, which has an α-Keggin structure. This anion is then reduced by, for example, ascorbic acid or SnCl2, to form the blue coloured β-keggin ion, PMo
12
O7−
40
. [5] The amount of the blue coloured ion produced is proportional to the amount of phosphate present and the absorption can be measured using a colorimeter to determine the amount of phosphorus. Examples of procedures are:

The comparison of the measured absorption against readings taken for analyses of standard solutions means that a detailed understanding of the structure of the blue complex was unnecessary.

This colorimetric method is ineffective when comparable amounts of arsenate are present in solution with phosphate. This is due to the strong chemical likeness of arsenate and phosphate. The resultant molybdenum blue for arsenate, using the same procedure, does produce a slightly different spectral signature, however. [11]

Recently, paper-based devices have become very attractive to use colorimetric determination for making inexpensive, disposable and convenient analytical devices for the determination of reactive phosphate in the field. By using an inexpensive and portable infrared Lightbox system, one can create uniform and repeatable lighting environments to take advantage of the peak absorbance of the molybdenum blue reaction in order to improve limit of detection of paper-based devices. This system may act as a substitute for expensive, lab-equipment spectrometers. [12]

Colorimetric determination of glucose

The Folin–Wu and the Somogyi–Nelson methods are both based on the same principles. In the first step, glucose (or a reducing sugar) is oxidised using a solution of Cu(II) ion, which is reduced to Cu(I) by the process. In the second step, the Cu(I) ions are then oxidised back to Cu(II) using a colourless hetero-polymolybdate complex, which is, in the process, reduced to give the characteristic blue colour. Finally the absorption of the hetero-poly molybdenum blue is measured using a colorimeter and compared to standards prepared from reacting sugar solutions of known concentration, to determine the amount of reducing-sugar present.
The Folin–Wu method [13] uses a reagent that contains sodium tungstate. The exact nature of the blue complex in this procedure is not known.
The Somogyi-Nelson method uses an arsenomolybdate complex formed by the reaction of ammonium molybdate, (NH4)6 Mo7O24, with sodium arsenate, Na2HAsO7. [14] [15] [16]

Colorimetric determination of some drugs containing catechol

Some drugs that contain a catechol group react with phosphomolybdic acid (H3PMo12O40) to give the heteropoly-molybdenum blue colour. [17] Micro quantities of the drugs can be determined.

Uses in qualitative analysis

Examples of simple tests [18] are shown below that rely on the production of the molybdenum blue colour either due to reduction:

or by detection of the heteroatom

Dittmer's spray reagent for phospholipids is used in thin layer chromatography to detect phospholipids. The spray reagent is prepared as follows:

When applied to the TLC plate, compounds containing phosphate ester show up immediately as blue spots. [19]

Isopoly molybdenum blues

The isopoly-molybdenum blues have been known for many years. They are the cause of the "blue waters" found near Idaho Springs, known to Native Americans. They were first documented by Scheele and Berzelius. [2] The compounds responsible for the blue colour were not known until 1995. [20] Before then it was well known that there were polymolybdates of Mo(VI). Molybdenum(VI)oxide, MoO3, when dissolved in aqueous alkali forms the tetrahedral molybdate anion, MoO2−
4
. Dissolving molybdate salts in strong acid produces "molybdic acid", MoO3·2H2O. In between these extremes of pH, polymeric ions are produced which are mostly built from MoO6 octahedral units sharing corners and edges. Examples include Mo
7
O6−
24
, Mo
8
O4−
26
and Mo
36
O
112
(H2O)8−
16
, which contain the {(Mo)Mo5}-type unit comprising a central MoO7 pentagonal bipyramid sharing edges with five MoO6 octahedra. The later unit occurs also in the giant mixed-valence molybdenum blue species [HxMo368O1032(H2O)240(SO4)48]48− (x  16) [21] as well as in the cluster described in the next section. The molybdenum blue species are obtained by reduction of acidified molybdate(VI) solutions.

The big wheel

The first publication of the structure of wheel shaped cluster anion, first determined for the nitrosyl derivative by Achim Müller et al. [20] was announced in New Scientist as "Big Wheel rolls back the molecular frontier". [22] Further work by the same group then refined the initial findings and determined the structure of the wheel produced in molybdate solutions as [Mo154O462H14(H2O)70]14−. [20] The Mo154-type cluster was then shown to be the basic structural type of molybdenum blue compounds obtained under slightly different conditions. [2]

The structure of the big wheel is constructed from units containing 11 Mo atoms ({Mo11}-type units), 14 of which are linked together to form the {Mo154}-type cluster that has an external diameter of 3.4 nm. (12 {Mo11}-type units are also involved in the construction of higher symmetrical spherical systems called Keplerates [2] ) These units consist of a central MoO7 bipyramid sharing edges with 5 MoO6 octahedra (an illustration of this is on page 155 of the review [23] ). With 5 more linking MoO6 octahedra the repeating {Mo11}-type unit is built up.

The spherical vesicle

Along with other aggregates, a hollow, spherical structure self-assembles from approximately 1,165 Mo154 wheels. This was termed a vesicle by analogy with lipid vesicles. Unlike lipid vesicles that are stabilised by hydrophobic interactions it is believed that the vesicle is stabilised by an interplay of van der Waals attraction, long-range electrostatic repulsion with further stabilization arising from hydrogen bonding involving water molecules encapsulated between the wheel-shaped clusters and in the vesicles' interior. The radius of the vesicle is 45 nm. [24]

Molybdenum blue pigment

A pigment termed molybdenum blue is recorded in 1844 as a mixture of molybdenum with "oxyde of tin or phosphate of lime". [3] An alternative formulation involves "digesting" molybdenum sulfide with nitric acid to form molybdic acid, which is then mixed with tin filings and a little muriatic acid (HCl). [3] This is evaporated and heated with alumina. A 1955 paper states that molybdenum blue is unstable and is not used commercially as a pigment. [25] The chemistry of these pigments has not been investigated.

Related Research Articles

<span class="mw-page-title-main">Pnictogen</span> Group (V) elements of the periodic table with valency 5

A pnictogen is any of the chemical elements in group 15 of the periodic table. Group (V) is also known as the nitrogen group or nitrogen family. Group (V) consists of the elements nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), bismuth (Bi), and moscovium (Mc).

An oxyanion, or oxoanion, is an ion with the generic formula A
x
Oz
y
. Oxyanions are formed by a large majority of the chemical elements. The formulae of simple oxyanions are determined by the octet rule. The corresponding oxyacid of an oxyanion is the compound H
z
A
x
O
y
. The structures of condensed oxyanions can be rationalized in terms of AOn polyhedral units with sharing of corners or edges between polyhedra. The oxyanions adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP) are important in biology.

<span class="mw-page-title-main">Polyoxometalate</span> Polyatomic ion made of ≥3 transition metal oxyanions bound by oxygen in a 3D structure

In chemistry, a polyoxometalate is a polyatomic ion, usually an anion, that consists of three or more transition metal oxyanions linked together by shared oxygen atoms to form closed 3-dimensional frameworks. The metal atoms are usually group 6 or less commonly group 5 and group 7 transition metals in their high oxidation states. Polyoxometalates are often colorless, orange or red diamagnetic anions. Two broad families are recognized, isopolymetalates, composed of only one kind of metal and oxide, and heteropolymetalates, composed of one metal, oxide, and a main group oxyanion. Many exceptions to these general statements exist.

Molybdenum trioxide describes a family of inorganic compounds with the formula MoO3(H2O)n where n = 0, 1, 2. These compounds are produced on the largest scale of any molybdenum compound. The anhydrous oxide is a precursor to molybdenum metal, an important alloying agent. It is also an important industrial catalyst. It is a yellow solid, although impure samples can appear blue or green.

<span class="mw-page-title-main">Phosphoric acids and phosphates</span>

A phosphoric acid, in the general sense, is a phosphorus oxoacid in which each phosphorus (P) atom is in the oxidation state +5, and is bonded to four oxygen (O) atoms, one of them through a double bond, arranged as the corners of a tetrahedron. Two or more of these PO
4
tetrahedra may be connected by shared single-bonded oxygens, forming linear or branched chains, cycles, or more complex structures. The single-bonded oxygen atoms that are not shared are completed with acidic hydrogen atoms. The general formula of a phosphoric acid is H
n+2−2x
P
n
O
3n+1−x
, where n is the number of phosphorus atoms and x is the number of fundamental cycles in the molecule's structure, between 0 and (n+2)/2.

The arsenate is an ion with the chemical formula AsO3−4. Bonding in arsenate consists of a central arsenic atom, with oxidation state +5, double bonded to one oxygen atom and single bonded to a further three oxygen atoms. The four oxygen atoms orient around the arsenic atom in a tetrahedral geometry. Resonance disperses the ion's −3 charge across all four oxygen atoms.

<span class="mw-page-title-main">Arsenic acid</span> Chemical compound

Arsenic acid or arsoric acid is the chemical compound with the formula H3AsO4. More descriptively written as AsO(OH)3, this colorless acid is the arsenic analogue of phosphoric acid. Arsenate and phosphate salts behave very similarly. Arsenic acid as such has not been isolated, but is only found in solution, where it is largely ionized. Its hemihydrate form (2H3AsO4·H2O) does form stable crystals. Crystalline samples dehydrate with condensation at 100 °C.

In chemistry, an arsenite is a chemical compound containing an arsenic oxyanion where arsenic has oxidation state +3. Note that in fields that commonly deal with groundwater chemistry, arsenite is used generically to identify soluble AsIII anions. IUPAC have recommended that arsenite compounds are to be named as arsenate(III), for example ortho-arsenite is called trioxidoarsenate(III). Ortho-arsenite contrasts to the corresponding anions of the lighter members of group 15, phosphite which has the structure HPO2−3 and nitrite, NO−2 which is bent.

<span class="mw-page-title-main">Sodium molybdate</span> Chemical compound

Sodium molybdate, Na2MoO4, is useful as a source of molybdenum. This white, crystalline salt is often found as the dihydrate, Na2MoO4·2H2O.

<span class="mw-page-title-main">Heteropolymetalate</span> Polyatomic ion made of ≥3 different transition metal oxyanions bound by oxygen in a 3D structure

In chemistry, the heteropolymetalates are a subset of the polyoxometalates, which consist of three or more transition metal oxyanions linked together by shared oxygen atoms to form a closed 3-dimensional molecular framework. In contrast to isopolymetalates, which contain only one kind of metal atom, the heteropolymetalates contain differing main group oxyanions. The metal atoms are usually group 6 or less commonly group 5 transition metals in their highest oxidation states. They are usually colorless to orange, diamagnetic anions. For most heteropolymetalates the W, Mo, or V, is complemented by main group oxyanions phosphate and silicate. Many exceptions to these general statements exist, and the class of compounds includes hundreds of examples.

In chemical nomenclature, the IUPAC nomenclature of inorganic chemistry is a systematic method of naming inorganic chemical compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in Nomenclature of Inorganic Chemistry. Ideally, every inorganic compound should have a name from which an unambiguous formula can be determined. There is also an IUPAC nomenclature of organic chemistry.

<span class="mw-page-title-main">Phosphotungstic acid</span> Chemical compound

Phosphotungstic acid (PTA) or tungstophosphoric acid (TPA), is a heteropoly acid with the chemical formula H3PW12O40]. It forms hydrates H3[PW12O40nH2O. It is normally isolated as the n = 24 hydrate but can be desiccated to the hexahydrate (n = 6). EPTA is the name of ethanolic phosphotungstic acid, its alcohol solution used in biology. It has the appearance of small, colorless-grayish or slightly yellow-green crystals, with melting point 89 °C (24 H2O hydrate). It is odorless and soluble in water (200 g/100 ml). It is not especially toxic, but is a mild acidic irritant. The compound is known by a variety of names and acronyms (see 'other names' section of infobox).

<span class="mw-page-title-main">Keggin structure</span> Best known structural form for heteropoly acids

Keggin structure is the best known structural form for heteropoly acids. It is the structural form of α-Keggin anions, which have a general formula of [XM12O40]n, where X is the heteroatom, M is the addendum atom, and O represents oxygen. The structure self-assembles in acidic aqueous solution and is the most stable structure of polyoxometalate catalysts.

<span class="mw-page-title-main">Ammonium heptamolybdate</span> Chemical compound

Ammonium heptamolybdate is the inorganic compound whose chemical formula is (NH4)6Mo7O24, normally encountered as the tetrahydrate. A dihydrate is also known. It is a colorless solid, often referred to as ammonium paramolybdate or simply as ammonium molybdate, although "ammonium molybdate" can also refer to ammonium orthomolybdate, (NH4)2MoO4, and several other compounds. It is one of the more common molybdenum compounds.

Thiophosphates (or phosphorothioates, PS) are chemical compounds and anions with the general chemical formula PS
4−x
O3−
x
(x = 0, 1, 2, or 3) and related derivatives where organic groups are attached to one or more O or S. Thiophosphates feature tetrahedral phosphorus(V) centers.

A range of qualitative and quantitative tests have been developed to detect phosphate ions (PO43-) in solution. Such tests find use in industrial processes, scientific research, and environmental water monitoring.

<span class="mw-page-title-main">Molybdate</span> Chemical compound of the form –O–MoO₂–O–

In chemistry, a molybdate is a compound containing an oxyanion with molybdenum in its highest oxidation state of 6: O−Mo(=O)2−O. Molybdenum can form a very large range of such oxyanions, which can be discrete structures or polymeric extended structures, although the latter are only found in the solid state. The larger oxyanions are members of group of compounds termed polyoxometalates, and because they contain only one type of metal atom are often called isopolymetalates. The discrete molybdenum oxyanions range in size from the simplest MoO2−
4
, found in potassium molybdate up to extremely large structures found in isopoly-molybdenum blues that contain for example 154 Mo atoms. The behaviour of molybdenum is different from the other elements in group 6. Chromium only forms the chromates, CrO2−
4
, Cr
2
O2−
7
, Cr
3
O2−
10
and Cr
4
O2−
13
ions which are all based on tetrahedral chromium. Tungsten is similar to molybdenum and forms many tungstates containing 6 coordinate tungsten.

Ammonium orthomolybdate is the inorganic compound with the chemical formula (NH4)2MoO4. It is a white solid that is prepared by treating molybdenum trioxide with aqueous ammonia. Upon heating these solutions, ammonia is lost, to give ammonium heptamolybdate ((NH4)6Mo7O24·4H2O).

<span class="mw-page-title-main">Arsenic compounds</span> Chemical compounds containing arsenic

Compounds of arsenic resemble in some respects those of phosphorus which occupies the same group (column) of the periodic table. The most common oxidation states for arsenic are: −3 in the arsenides, which are alloy-like intermetallic compounds, +3 in the arsenites, and +5 in the arsenates and most organoarsenic compounds. Arsenic also bonds readily to itself as seen in the square As3−
4
ions in the mineral skutterudite. In the +3 oxidation state, arsenic is typically pyramidal owing to the influence of the lone pair of electrons.

References

  1. John R. Shapley (2004). Inorganic Syntheses, Vol 34 . John Wiley & Sons, Inc. p.  197. ISBN   978-0-471-64750-8.
  2. 1 2 3 4 From Scheele and Berzelius to MÜller: polyoxometalates (POMs) revisited and the "missing link" between the bottom up and top down approaches P. Gouzerh, M. Che; L'Actualité Chimique, 2006, 298, 9
  3. 1 2 3 A Dictionary of Arts, Manufactures, and Mines: Containing a Clear Exposition of Their Principles, Andrew Ure, Published 1844, D. Appleton & Co.
  4. 1 2 3 4 Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements, 2nd Edition, Oxford:Butterworth-Heinemann. ISBN   0-7506-3365-4
  5. 1 2 Structure of a heteropoly blue. The four electron reduced beta-12-molybdophosphate anion, JN Barrows, G. B. Jameson, M. T. Pope, J. Am. Chem. Soc., 1985, 107, 1771
  6. "A single solution method for the determination of soluble phosphate in sea water", Murphy J., Riley J.P., J. Mar. Biol. Assoc. UK, 1958, 37, 9–14
  7. BS1728-12:1961 "Standard Methods for the analysis of aluminium and aluminium alloys. Determination of silicon (absorptiometric molybdenum blue method)" date of publication 1961-10-14 ISBN   0-580-01569-6
  8. ISO 7834:1987 "Iron ores – Determination of arsenic content – Molybdenum blue spectrophotometric method"
  9. ISO 8556:1986 "Title: Aluminium ores – Determination of phosphorus content – Molybdenum blue spectrophotometric method"
  10. "Determination of Phosphorus, Germanium, Silicon, and Arsenic by the Heteropoly Blue Method" D. F. Boltz, M.G.Mellon, Analytical Chemistry, 19 (1947), 873 doi : 10.1021/ac60011a019
  11. "Determination of phosphate/arsenate by a modified molybdenum blue method and reduction of arsenate by S
    2
    O2−
    4
    " Susanna Tsang, Frank Phu, Marc M Baum and Gregory A Poskrebyshev; Talanta71(4): 1560–8 (2007), doi : 10.1016/j.talanta.2006.07.043
  12. Heidari-Bafroui, Hojat; Ribeiro, Brenno; Charbaji, Amer; Anagnostopoulos, Constantine; Faghri, Mohammad (2020-10-16). "Portable infrared lightbox for improving the detection limits of paper-based phosphate devices". Measurement. 173: 108607. doi: 10.1016/j.measurement.2020.108607 . ISSN   0263-2241. S2CID   225140011.
  13. "A system of blood analysis" O. Folin, H. Wu, The Journal of Biological Chemistry (1920), 41(3), 367
  14. Food Analysis S Suzanne Nielson (2003) Springer ISBN   0-306-47495-6
  15. "A new reagent for the determination of sugars", M. Somogyi, Journal of Biological Chemistry (1945), 160, 61
  16. "A photometric adaptation of the Somogyi method for the determination of glucose", Nelson N., Journal of Biological Chemistry (1944), 153, 375
  17. "Spectrophotometric determination of microquantities of Carbidopa, Levodopa and alpha-methyldopa using molybdatophosphoric acid", P. B. Issopoulos, Pharm. Acta Helv.64, 82 (1989)
  18. "Spot test analysis", Ervin Jungreis, 'Encyclopedia of Analytical Chemistry, John Wiley and Sons (2000)
  19. "A simple, specific spray for the detection of phospholipids on thin-layer chromatograms", Dittmer, J. C., R. L. Lester. J. Lipid Res.5 (1964), 126–127
  20. 1 2 3 "[Mo154(NO)14O420(OH)28(H2O)70](25±5)−: A water-soluble big wheel with more than 700 atoms and a relative molecular mass of about 24000", A. Müller, E. Krickemeyer, J. Meyer, H. Bogge, F. Peters, W. Plass, E. Diemann, S. Dillinger, F. Nonnebruch, M. Randerath, C. Menke, Angew. Chem. Int. Ed. Engl., 1995, 34, 19, 2122. The first formula was published with an error limit for the negative charge, the final formula nowadays accepted is [Mo154(NO)14O448H14(H2O)70]28− (see "Soluble Molybdenum Blue—'des Pudels Kern'", A. Müller, C. Serain, Acc. Chem. Res., 2000, 33, 2).
  21. "Inorganic Chemistry Goes Protein Size: A Mo368 Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking", A. Müller, E. Beckmann, H. Bögge, A. Dress, Angew. Chem. Int. Ed., 2002, 41, 1162
  22. "Big Wheel rolls back the molecular frontier", D. Bradley, New Scientist, 1995, 148, 18
  23. "En route from the mystery of molybdenum blue via related manipulatable building blocks to aspects of materials science", A. Müller, S. Roy, Coord. Chem. Rev. 2003, 245, 153
  24. "Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles", T. Liu, E. Diemann, H. Li, A. W. M. Dress, A. Müller, Nature, 2003, 426, 59
  25. "Inorganic pigments", W.G. Huckle, E. Lalor, Industrial and Engineering Chemistry (1955), 47, 8, 1501