Mother's curse

Last updated

In biology, mother's curse is an evolutionary effect that males inherit deleterious mitochondrial genome (mtDNA) mutations from their mother, while those mutations are beneficial, neutral or less deleterious to females.

Contents

As mtDNA is usually maternally inherited, mtDNA mutations deleterious to males but beneficial, neutral or less deleterious to females are not subjected to be selected against, which results in a sex-biased selective sieve. [1] Therefore, male-specific deleterious mtDNA mutations could be maintained and reach a high frequency in populations, decreasing males' fitness and population viability. In addition, the effect of mtDNA mutations on fitness has a threshold effect, i.e. only when the number of mutation reaches the threshold, mtDNA mutations will decrease individual fitness. [2]

Males are more susceptible to mtDNA defects, not only because of lack of selection for mtDNA on males but also due to sperm's higher energy requirements for motility. [3] There are evidence showing mtDNA mutations are more likely to affect males. In humans, Leber's hereditary optic neuropathy (LHON) is caused by one or several point mutations on mtDNA and LHON affects more males than females. [4] In mice, a deletion on mtDNA causes oligospermia and asthenozoospermia, resulting in infertility. [5] Taken together, mtDNA mutations pose a greater threat on males than on females.

The process showing how mother's curse occurs. mtDNA mutates and generates copies that are detrimental for females (red) and copies that only detrimental for males (blue). Mitochondria bad for females are selected against, while mitochondria only bad for males are transmitted to the offspring. As a result, the males of offspring who inherit bad mutations would have a lower fitness. Mother curse.png
The process showing how mother's curse occurs. mtDNA mutates and generates copies that are detrimental for females (red) and copies that only detrimental for males (blue). Mitochondria bad for females are selected against, while mitochondria only bad for males are transmitted to the offspring. As a result, the males of offspring who inherit bad mutations would have a lower fitness.

Evidence

Mother's curse predicts that mtDNA mutations pose a greater threat on males and male-specific detrimental mutations in mtDNA could be maintained and reach a high frequency. Several researches support these predictions. In humans, a mtDNA haplogroup that exhibits reduction in sperm mobility reaches a frequency of 20%. [2] A 2017 study found the mother's curse preserving a mutation that causes Leber's hereditary optic neuropathy in a population of French Canadians for over 290 years. [6]

In Drosophila melanogaster , mtDNA polymorphism mainly affects nuclear gene expression in males but not in females and those genes are predominantly male-biased. [7] Moreover, Camus et al. [1] [8] constructed 13 D. melanogaster lines with isogenic nuclear genome and different mtDNA haplotypes. They demonstrated that mtDNA polymorphism is responsible for male aging, while there is no significant effect on female longevity. Smith et al. [3] analyzed two different haplotype of mtDNA in hares and found that males of those two haplogroups show variation in their reproductive success. In addition, the mitochondrial genome is associated with sperm viability and length in seed beetles (Callosobruchus maculatus). [9]

How to counteract the effects of male-specific deleterious mtDNA mutations

If mtDNA mutations deleterious to male fitness could not be selected against, they would reach a high frequency despite the high fitness cost for males. Eventually, detrimental mutations would be fixed and lead to species extinction. However, we have not observed extinction in spite of high mutation load of mtDNA. So there must be ways that species could decrease the effects of male-specific deleterious mtDNA mutations. [2]

Significance for evolution

Mitochondria play a pivotal role in eukaryotic respiration. Because of maternal inheritance, mtDNA has no selection in males. Instead, mutations only deleterious to males could be maintained and reach a higher frequency by selection or genetic drift in females. As a consequence, asymmetric effects of mtDNA mutations result in sexual conflict. On the other hand, to alleviate the effect of mother's curse, interaction between mtDNA and nuclear genes promotes coevolution of mitochondrial and nuclear genomes.

See also

Related Research Articles

<span class="mw-page-title-main">Genetic disorder</span> Health problem caused by one or more abnormalities in the genome

A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosomal abnormality. Although polygenic disorders are the most common, the term is mostly used when discussing disorders with a single genetic cause, either in a gene or chromosome. The mutation responsible can occur spontaneously before embryonic development, or it can be inherited from two parents who are carriers of a faulty gene or from a parent with the disorder. When the genetic disorder is inherited from one or both parents, it is also classified as a hereditary disease. Some disorders are caused by a mutation on the X chromosome and have X-linked inheritance. Very few disorders are inherited on the Y chromosome or mitochondrial DNA.

Selfish genetic elements are genetic segments that can enhance their own transmission at the expense of other genes in the genome, even if this has no positive or a net negative effect on organismal fitness. Genomes have traditionally been viewed as cohesive units, with genes acting together to improve the fitness of the organism. However, when genes have some control over their own transmission, the rules can change, and so just like all social groups, genomes are vulnerable to selfish behaviour by their parts.

<span class="mw-page-title-main">Mitochondrial DNA</span> DNA located in mitochondria

Mitochondrial DNA is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA is only a small portion of the DNA in a eukaryotic cell; most of the DNA can be found in the cell nucleus and, in plants and algae, also in plastids such as chloroplasts.

Heteroplasmy is the presence of more than one type of organellar genome within a cell or individual. It is an important factor in considering the severity of mitochondrial diseases. Because most eukaryotic cells contain many hundreds of mitochondria with hundreds of copies of mitochondrial DNA, it is common for mutations to affect only some mitochondria, leaving most unaffected.

<span class="mw-page-title-main">Homoplasmy</span> Identity of organellar DNA sequences in a cell

Homoplasmy is a term used in genetics to describe a eukaryotic cell whose copies of mitochondrial DNA are all identical. In normal and healthy tissues, all cells are homoplasmic. Homoplasmic mitochondrial DNA copies may be normal or mutated; however, most mutations are heteroplasmic. It has been discovered, though, that homoplasmic mitochondrial DNA mutations may be found in human tumors.

<span class="mw-page-title-main">Conservation genetics</span> Interdisciplinary study of extinction avoidance

Conservation genetics is an interdisciplinary subfield of population genetics that aims to understand the dynamics of genes in a population for the purpose of natural resource management, conservation of genetic diversity, and the prevention of species extinction. Scientists involved in conservation genetics come from a variety of fields including population genetics, research in natural resource management, molecular ecology, molecular biology, evolutionary biology, and systematics. The genetic diversity within species is one of the three fundamental components of biodiversity, so it is an important consideration in the wider field of conservation biology.

<span class="mw-page-title-main">Leber's hereditary optic neuropathy</span> Mitochondrially inherited degeneration of retinal cells in human

Leber's hereditary optic neuropathy (LHON) is a mitochondrially inherited degeneration of retinal ganglion cells (RGCs) and their axons that leads to an acute or subacute loss of central vision; it predominantly affects young adult males. LHON is transmitted only through the mother, as it is primarily due to mutations in the mitochondrial genome, and only the egg contributes mitochondria to the embryo. Men cannot pass on the disease to their offspring. LHON is usually due to one of three pathogenic mitochondrial DNA (mtDNA) point mutations. These mutations are at nucleotide positions 11778 G to A, 3460 G to A and 14484 T to C, respectively in the ND4, ND1 and ND6 subunit genes of complex I of the oxidative phosphorylation chain in mitochondria.

<span class="mw-page-title-main">MELAS syndrome</span> Medical condition

Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is one of the family of mitochondrial diseases, which also include MIDD, MERRF syndrome, and Leber's hereditary optic neuropathy. It was first characterized under this name in 1984. A feature of these diseases is that they are caused by defects in the mitochondrial genome which is inherited purely from the female parent. The most common MELAS mutation is mitochondrial mutation, mtDNA, referred to as m.3243A>G.

<span class="mw-page-title-main">Haplodiploidy</span> Biological system where sex is determined by the number of sets of chromosomes

Haplodiploidy is a sex-determination system in which males develop from unfertilized eggs and are haploid, and females develop from fertilized eggs and are diploid. Haplodiploidy is sometimes called arrhenotoky.

<span class="mw-page-title-main">MERRF syndrome</span> Medical condition

MERRF syndrome is a mitochondrial disease. It is extremely rare, and has varying degrees of expressivity owing to heteroplasmy. MERRF syndrome affects different parts of the body, particularly the muscles and nervous system. The signs and symptoms of this disorder appear at an early age, generally childhood or adolescence. The causes of MERRF syndrome are difficult to determine, but because it is a mitochondrial disorder, it can be caused by the mutation of nuclear DNA or mitochondrial DNA. The classification of this disease varies from patient to patient, since many individuals do not fall into one specific disease category. The primary features displayed on a person with MERRF include myoclonus, seizures, cerebellar ataxia, myopathy, and ragged red fibers (RRF) on muscle biopsy, leading to the disease's name. Secondary features include dementia, optic atrophy, bilateral deafness, peripheral neuropathy, spasticity, or multiple lipomata. Mitochondrial disorders, including MERRFS, may present at any age.

In genetics, paternal mtDNA transmission and paternal mtDNA inheritance refer to the incidence of mitochondrial DNA (mtDNA) being passed from a father to his offspring. Paternal mtDNA inheritance is observed in a small proportion of species; in general, mtDNA is passed unchanged from a mother to her offspring, making it an example of non-Mendelian inheritance. In contrast, mtDNA transmission from both parents occurs regularly in certain bivalves.

Cytoplasmic male sterility is total or partial male sterility in hermaphrodite organisms, as the result of specific nuclear and mitochondrial interactions. Male sterility is the failure to produce functional anthers, pollen, or male gametes. Such male sterility in hermaphrodite populations leads to gynodioecious populations.

Allotopic expression (AE) refers to expression of genes in the cell nucleus that normally are expressed only from the mitochondrial genome. Biomedically engineered AE has been suggested as a possible future tool in gene therapy of certain mitochondria-related diseases, however this view is controversial. While this type of expression has been successfully carried out in yeast, the results in mammals have been conflicting.

<span class="mw-page-title-main">Neuropathy, ataxia, and retinitis pigmentosa</span> Medical condition

Neuropathy, ataxia, and retinitis pigmentosa, also known as NARP syndrome, is a rare disease with mitochondrial inheritance that causes a variety of signs and symptoms chiefly affecting the nervous system Beginning in childhood or early adulthood, most people with NARP experience numbness, tingling, or pain in the arms and legs ; muscle weakness; and problems with balance and coordination (ataxia). Many affected individuals also have vision loss caused by changes in the light-sensitive tissue that lines the back of the eye. In some cases, the vision loss results from a condition called retinitis pigmentosa. This eye disease causes the light-sensing cells of the retina gradually to deteriorate.

<span class="mw-page-title-main">MT-ND6</span> Mitochondrial gene coding for a protein involved in the respiratory chain

MT-ND6 is a gene of the mitochondrial genome coding for the NADH-ubiquinone oxidoreductase chain 6 protein (ND6). The ND6 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variations in the human MT-ND6 gene are associated with Leigh's syndrome, Leber's hereditary optic neuropathy (LHON) and dystonia.

<span class="mw-page-title-main">MT-ND4</span> Mitochondrial gene coding for a protein involved in the respiratory chain

MT-ND4 is a gene of the mitochondrial genome coding for the NADH-ubiquinone oxidoreductase chain 4 (ND4) protein. The ND4 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variations in the MT-ND4 gene are associated with age-related macular degeneration (AMD), Leber's hereditary optic neuropathy (LHON), mesial temporal lobe epilepsy (MTLE) and cystic fibrosis.

<span class="mw-page-title-main">MT-ND3</span> Mitochondrial protein-coding gene whose product is involved in the respiratory chain

MT-ND3 is a gene of the mitochondrial genome coding for the NADH dehydrogenase 3 (ND3) protein. The ND3 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variants of MT-ND3 are associated with Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), Leigh's syndrome (LS) and Leber's hereditary optic neuropathy (LHON).

<span class="mw-page-title-main">MT-ATP6</span> Mitochondrial protein-coding gene whose product is involved in ATP synthesis

MT-ATP6 is a mitochondrial gene with the full name 'mitochondrially encoded ATP synthase membrane subunit 6' that encodes the ATP synthase Fo subunit 6. This subunit belongs to the Fo complex of the large, transmembrane F-type ATP synthase. This enzyme, which is also known as complex V, is responsible for the final step of oxidative phosphorylation in the electron transport chain. Specifically, one segment of ATP synthase allows positively charged ions, called protons, to flow across a specialized membrane inside mitochondria. Another segment of the enzyme uses the energy created by this proton flow to convert a molecule called adenosine diphosphate (ADP) to ATP. Mutations in the MT-ATP6 gene have been found in approximately 10 to 20 percent of people with Leigh syndrome.

<span class="mw-page-title-main">MT-CYB</span> A mitochondrial protein-coding gene whose product is involved in the respiratory chain

Cytochrome b is a protein that in humans is encoded by the MT-CYB gene. Its gene product is a subunit of the respiratory chain protein ubiquinol–cytochrome c reductase, which consists of the products of one mitochondrially encoded gene, MT-CYB, and ten nuclear genes—UQCRC1, UQCRC2, CYC1, UQCRFS1, UQCRB, "11kDa protein", UQCRH, Rieske protein presequence, "cyt c1 associated protein", and Rieske-associated protein.

Uniparental inheritance is a non-Mendelian form of inheritance that consists of the transmission of genotypes from one parental type to all progeny. That is, all the genes in offspring will originate from only the mother or only the father. This phenomenon is most commonly observed in eukaryotic organelles such as mitochondria and chloroplasts. This is because such organelles contain their own DNA and are capable of independent mitotic replication that does not endure crossing over with the DNA from another parental type. Although uniparental inheritance is the most common form of inheritance in organelles, there is increased evidence of diversity. Some studies found doubly uniparental inheritance (DUI) and biparental transmission to exist in cells. Evidence suggests that even when there is biparental inheritance, crossing-over doesn't always occur. Furthermore, there is evidence that the form of organelle inheritance varied frequently over time. Uniparental inheritance can be divided into multiple subtypes based on the pathway of inheritance.

References

  1. 1 2 Frank, Steven A. "Evolution: mitochondrial burden on male health." Current Biology 22.18 (2012): R797-R799.
  2. 1 2 3 Gemmell, Neil J., Victoria J. Metcalf, and Fred W. Allendorf. "Mother's curse: the effect of mtDNA on individual fitness and population viability." Trends in Ecology & Evolution 19.5 (2004): 238-244.
  3. 1 2 Smith, Steve, Christopher Turbill, and Franz Suchentrunk. "Introducing mother's curse: low male fertility associated with an imported mtDNA haplotype in a captive colony of brown hares." Molecular ecology 19.1 (2010): 36-43.
  4. Riordan-Eva, P., et al. "The clinical features of Leber's hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation." Brain 118.2 (1995): 319-337.
  5. Nakada, Kazuto, et al. "Mitochondria-related male infertility." Proceedings of the National Academy of Sciences 103.41 (2006): 15148-15153.
  6. Labuda, Damian; Brais, Bernard; Alan A. Cohen; Gagnon, Alain; Moreau, Claudia; Milot, Emmanuel (September 2017). "Mother's curse neutralizes natural selection against a human genetic disease over three centuries". Nature Ecology & Evolution. 1 (9): 1400–1406. doi:10.1038/s41559-017-0276-6. ISSN   2397-334X. PMID   29046555. S2CID   4183585.
  7. Innocenti, Paolo, Edward H. Morrow, and Damian K. Dowling. "Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution." Science 332.6031 (2011): 845-848.
  8. Camus, M. Florencia, David J. Clancy, and Damian K. Dowling. "Mitochondria, maternal inheritance, and male aging." Current Biology 22.18 (2012): 1717-1721.
  9. Dowling, Damian K., A. Larkeson Nowostawski, and Göran Arnqvist. "Effects of cytoplasmic genes on sperm viability and sperm morphology in a seed beetle: implications for sperm competition theory?." Journal of Evolutionary Biology 20.1 (2007): 358-368.
  10. Gyllensten, Ulf, et al. "Paternal inheritance of mitochondrial DNA in mice." (1991): 255-257.
  11. Schnable, Patrick S., and Roger P. Wise. "The molecular basis of cytoplasmic male sterility and fertility restoration." Trends in plant science 3.5 (1998): 175-180.
  12. Wade, Michael J., and Yaniv Brandvain. "Reversing mother's curse: selection on male mitochondrial fitness effects." Evolution 63.4 (2009): 1084-1089.
  13. Hedrick, Philip W. "Reversing mother's curse revisited." Evolution 66.2 (2012): 612-616.