Multi-compartment model

Last updated

A multi-compartment model is a type of mathematical model used for describing the way materials or energies are transmitted among the compartments of a system. Sometimes, the physical system that we try to model in equations is too complex, so it is much easier to discretize the problem and reduce the number of parameters. Each compartment is assumed to be a homogeneous entity within which the entities being modeled are equivalent. A multi-compartment model is classified as a lumped parameters model. Similar to more general mathematical models, multi-compartment models can treat variables as continuous, such as a differential equation, or as discrete, such as a Markov chain. Depending on the system being modeled, they can be treated as stochastic or deterministic.

Contents

Multi-compartment models are used in many fields including pharmacokinetics, epidemiology, biomedicine, systems theory, complexity theory, engineering, physics, information science and social science. The circuits systems can be viewed as a multi-compartment model as well. Most commonly, the mathematics of multi-compartment models is simplified to provide only a single parameter—such as concentration—within a compartment.

In Systems Theory

In systems theory, it involves the description of a network whose components are compartments that represent a population of elements that are equivalent with respect to the manner in which they process input signals to the compartment.

Single-compartment model

Singlecell.PNG

Possibly the simplest application of multi-compartment model is in the single-cell concentration monitoring (see the figure above). If the volume of a cell is V, the mass of solute is q, the input is u(t) and the secretion of the solution is proportional to the density of it within the cell, then the concentration of the solution C within the cell over time is given by

Where k is the proportionality.

Software

Simulation Analysis and Modeling 2 SAAM II is a software system designed specifically to aid in the development and testing of multi-compartment models. It has a user-friendly graphical user interface wherein compartmental models are constructed by creating a visual representation of the model. From this model, the program automatically creates systems of ordinary differential equations. The program can both simulate and fit models to data, returning optimal parameter estimates and associated statistics. It was developed by scientists working on metabolism and hormones kinetics (e.g., glucose, lipids, or insulin). [1] It was then used for tracer studies and pharmacokinetics. Albeit a multi-compartment model can in principle be developed and run via other software, like MATLAB or C++ languages, the user interface offered by SAAM II allows the modeler (and non-modelers) to better control the system, especially when the complexity increases.

Discrete Compartmental Model

Discrete models are concerned with discrete variables, often a time interval . An example of a discrete multi-compartmental model is a discrete version of the Lotka–Volterra Model. [2] Here consider two compartments prey and predators denoted by and respectively. The compartments are coupled to each other by mass action terms in each equation. Over a discrete time-step , we get

Here

These equations are easily solved iteratively.

Continuous Compartmental Model

The discrete Lotka-Volterra example above can be turned into a continuous version by rearranging and taking the limit as .

This yields a system of ordinary differential equations. Treating this model as differential equations allows the implementation of calculus methods to study the dynamics of the system more in-depth.

Multi-Compartment Model

As the number of compartments increases, the model can be very complex and the solutions usually beyond ordinary calculation.

The formulae for n-cell multi-compartment models become:

Where

for (as the total 'contents' of all compartments is constant in a closed system)

Or in matrix forms:

Where

and (as the total 'contents' of all compartments is constant in a closed system)

In the special case of a closed system (see below) i.e. where then there is a general solution.

Where , , ... and are the eigenvalues of ; , , ... and are the respective eigenvectors of ; and , , .... and are constants.

However, it can be shown that given the above requirement to ensure the 'contents' of a closed system are constant, then for every pair of eigenvalue and eigenvector then either or and also that one eigenvalue is 0, say

So

Where

for

This solution can be rearranged:

This somewhat inelegant equation demonstrates that all solutions of an n-cell multi-compartment model with constant or no inputs are of the form:

Where is a nxn matrix and , , ... and are constants. Where

Model topologies

Generally speaking, as the number of compartments increases, it is challenging both to find the algebraic and numerical solutions to the model. However, there are special cases of models, which rarely exist in nature, when the topologies exhibit certain regularities that the solutions become easier to find. The model can be classified according to the interconnection of cells and input/output characteristics:

  1. Closed model: No sinks or source, lit. all koi = 0 and ui = 0;
  2. Open model: There are sinks or/and sources among cells.
  3. Catenary model: All compartments are arranged in a chain, with each pool connecting only to its neighbors. This model has two or more cells.
  4. Cyclic model: It's a special case of the catenary model, with three or more cells, in which the first and last cell are connected, i.e. k1n 0 or/and kn1 0.
  5. Mammillary model: Consists of a central compartment with peripheral compartments connecting to it. There are no interconnections among other compartments.
  6. Reducible model: It's a set of unconnected models. It bears great resemblance to the computer concept of forest as against trees.

See also

Related Research Articles

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Moment of inertia</span> Scalar measure of the rotational inertia with respect to a fixed axis of rotation

The moment of inertia, otherwise known as the mass moment of inertia, angular mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis, akin to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rate of rotation by a given amount.

<span class="mw-page-title-main">Hooke's law</span> Physical law: force needed to deform a spring scales linearly with distance

In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

In linear algebra, a square matrix  is called diagonalizable or non-defective if it is similar to a diagonal matrix. That is, if there exists an invertible matrix  and a diagonal matrix such that . This is equivalent to . This property exists for any linear map: for a finite-dimensional vector space , a linear map  is called diagonalizable if there exists an ordered basis of  consisting of eigenvectors of . These definitions are equivalent: if  has a matrix representation as above, then the column vectors of  form a basis consisting of eigenvectors of , and the diagonal entries of  are the corresponding eigenvalues of ; with respect to this eigenvector basis,  is represented by .

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

In mathematics, the spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues. More generally, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements of its spectrum. The spectral radius is often denoted by ρ(·).

In mathematics, the Hessian matrix, Hessian or Hesse matrix is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables. The Hessian matrix was developed in the 19th century by the German mathematician Ludwig Otto Hesse and later named after him. Hesse originally used the term "functional determinants". The Hessian is sometimes denoted by H or, ambiguously, by ∇2.

In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates (q, p) → that preserves the form of Hamilton's equations. This is sometimes known as form invariance. Although Hamilton's equations are preserved, it need not preserve the explicit form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations and Liouville's theorem.

In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.

In statistics, the theory of minimum norm quadratic unbiased estimation (MINQUE) was developed by C. R. Rao. MINQUE is a theory alongside other estimation methods in estimation theory, such as the method of moments or maximum likelihood estimation. Similar to the theory of best linear unbiased estimation, MINQUE is specifically concerned with linear regression models. The method was originally conceived to estimate heteroscedastic error variance in multiple linear regression. MINQUE estimators also provide an alternative to maximum likelihood estimators or restricted maximum likelihood estimators for variance components in mixed effects models. MINQUE estimators are quadratic forms of the response variable and are used to estimate a linear function of the variances.

In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices. It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities. This greatly simplifies operations such as finding the maximum or minimum of a multivariate function and solving systems of differential equations. The notation used here is commonly used in statistics and engineering, while the tensor index notation is preferred in physics.

In numerical analysis, the Crank–Nicolson method is a finite difference method used for numerically solving the heat equation and similar partial differential equations. It is a second-order method in time. It is implicit in time, can be written as an implicit Runge–Kutta method, and it is numerically stable. The method was developed by John Crank and Phyllis Nicolson in the mid 20th century.

In linear algebra, it is often important to know which vectors have their directions unchanged by a given linear transformation. An eigenvector or characteristic vector is such a vector. Thus an eigenvector of a linear transformation is scaled by a constant factor when the linear transformation is applied to it: . The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor .

In continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically deforming materials and other fluids and biological soft tissue.

In queueing theory, a discipline within the mathematical theory of probability, a Jackson network is a class of queueing network where the equilibrium distribution is particularly simple to compute as the network has a product-form solution. It was the first significant development in the theory of networks of queues, and generalising and applying the ideas of the theorem to search for similar product-form solutions in other networks has been the subject of much research, including ideas used in the development of the Internet. The networks were first identified by James R. Jackson and his paper was re-printed in the journal Management Science’s ‘Ten Most Influential Titles of Management Sciences First Fifty Years.’

In statistics, Bayesian multivariate linear regression is a Bayesian approach to multivariate linear regression, i.e. linear regression where the predicted outcome is a vector of correlated random variables rather than a single scalar random variable. A more general treatment of this approach can be found in the article MMSE estimator.

In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.

<span class="mw-page-title-main">Deformation (physics)</span> Transformation of a body from a reference configuration to a current configuration

In physics and continuum mechanics, deformation is the change in the shape or size of an object. It has dimension of length with SI unit of metre (m). It is quantified as the residual displacement of particles in a non-rigid body, from an initial configuration to a final configuration, excluding the body's average translation and rotation. A configuration is a set containing the positions of all particles of the body.

Common integrals in quantum field theory are all variations and generalizations of Gaussian integrals to the complex plane and to multiple dimensions. Other integrals can be approximated by versions of the Gaussian integral. Fourier integrals are also considered.

<span class="mw-page-title-main">Objective stress rate</span>

In continuum mechanics, objective stress rates are time derivatives of stress that do not depend on the frame of reference. Many constitutive equations are designed in the form of a relation between a stress-rate and a strain-rate. The mechanical response of a material should not depend on the frame of reference. In other words, material constitutive equations should be frame-indifferent (objective). If the stress and strain measures are material quantities then objectivity is automatically satisfied. However, if the quantities are spatial, then the objectivity of the stress-rate is not guaranteed even if the strain-rate is objective.

References

  1. Cobelli, Claudio; Foster, David (1998). "Compartmental models: theory and practice using the SAAM II software system". Adv Exp Med Biol (445): 79–101. doi:10.1007/978-1-4899-1959-5_5.
  2. Towers, Sherry. "Introduction to compartmental modeling | Polymatheia" . Retrieved 2022-03-20.