Multicast router discovery (MRD) provides a general mechanism for the discovery of multicast routers on an IP network. For IPv4, the mechanism is based on IGMP. For IPv6 the mechanism is based on MLD. Multicast router discovery is defined by RFC 4286.
Internet Protocol version 4 (IPv4) is the fourth version of the Internet Protocol (IP). It is one of the core protocols of standards-based internetworking methods in the Internet, and was the first version deployed for production in the ARPANET in 1983. It still routes most Internet traffic today, despite the ongoing deployment of a successor protocol, IPv6. IPv4 is described in IETF publication RFC 791, replacing an earlier definition.
The Internet Group Management Protocol (IGMP) is a communications protocol used by hosts and adjacent routers on IPv4 networks to establish multicast group memberships. IGMP is an integral part of IP multicast.
Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion. IPv6 is intended to replace IPv4. In December 1998, IPv6 became a Draft Standard for the IETF, who subsequently ratified it as an Internet Standard on 14 July 2017.
This computer networking article is a stub. You can help Wikipedia by expanding it. |
An Internet Protocol address is a numerical label assigned to each device connected to a computer network that uses the Internet Protocol for communication. An IP address serves two principal functions: host or network interface identification and location addressing.
In computer networking, the User Datagram Protocol (UDP) is one of the core members of the Internet protocol suite. The protocol was designed by David P. Reed in 1980 and formally defined in RFC 768. With UDP, computer applications can send messages, in this case referred to as datagrams, to other hosts on an Internet Protocol (IP) network. Prior communications are not required in order to set up communication channels or data paths.
A multicast address is a logical identifier for a group of hosts in a computer network that are available to process datagrams or frames intended to be multicast for a designated network service. Multicast addressing can be used in the link layer, such as Ethernet multicast, and at the internet layer for Internet Protocol Version 4 (IPv4) or Version 6 (IPv6) multicast.
The Simple Service Discovery Protocol (SSDP) is a network protocol based on the Internet protocol suite for advertisement and discovery of network services and presence information. It accomplishes this without assistance of server-based configuration mechanisms, such as Dynamic Host Configuration Protocol (DHCP) or Domain Name System (DNS), and without special static configuration of a network host. SSDP is the basis of the discovery protocol of Universal Plug and Play (UPnP) and is intended for use in residential or small office environments. It was formally described in an Internet Engineering Task Force (IETF) Internet Draft by Microsoft and Hewlett-Packard in 1999. Although the IETF proposal has since expired, SSDP was incorporated into the UPnP protocol stack, and a description of the final implementation is included in UPnP standards documents.
Zero-configuration networking (zeroconf) is a set of technologies that automatically creates a usable computer network based on the Internet Protocol Suite (TCP/IP) when computers or network peripherals are interconnected. It does not require manual operator intervention or special configuration servers. Without zeroconf, a network administrator must set up network services, such as Dynamic Host Configuration Protocol (DHCP) and Domain Name System (DNS), or configure each computer's network settings manually.
A broadcast address is a network address at which all devices connected to a multiple-access communications network are enabled to receive datagrams. A message sent to a broadcast address may be received by all network-attached hosts.
XORP is an open-source Internet Protocol routing software suite originally designed at the International Computer Science Institute in Berkeley, California. The name is derived from eXtensible Open Router Platform. It supports OSPF, BGP, RIP, PIM, IGMP, OLSR.
Multiprotocol Extensions for BGP, sometimes referred to as Multiprotocol BGP or Multicast BGP and defined in IETF RFC 4760, is an extension to Border Gateway Protocol (BGP) that allows different types of addresses to be distributed in parallel. Whereas standard BGP supports only IPv4 unicast addresses, Multiprotocol BGP supports IPv4 and IPv6 addresses and it supports unicast and multicast variants of each. Multiprotocol BGP allows information about the topology of IP multicast-capable routers to be exchanged separately from the topology of normal IPv4 unicast routers. Thus, it allows a multicast routing topology different from the unicast routing topology. Although MBGP enables the exchange of inter-domain multicast routing information, other protocols such as the Protocol Independent Multicast family are needed to build trees and forward multicast traffic.
IP multicast is a method of sending Internet Protocol (IP) datagrams to a group of interested receivers in a single transmission. It is the IP-specific form of multicast and is used for streaming media and other network applications. It uses specially reserved multicast address blocks in IPv4 and IPv6.
Multicast Source Discovery Protocol (MSDP) is a Protocol Independent Multicast (PIM) family multicast routing protocol defined by Experimental RFC 3618. Despite becoming the IPv4 de facto standard for inter-domain multicast, development of the protocol stopped in 2006 and it was decided by the authors not to proceed with making it a proposed standard. MSDP interconnects multiple IPv4 PIM Sparse-Mode (PIM-SM) domains which enables PIM-SM to have Rendezvous Point (RP) redundancy and inter-domain multicasting RFC 4611.
Source-specific multicast (SSM) is a method of delivering multicast packets in which the only packets that are delivered to a receiver are those originating from a specific source address requested by the receiver. By so limiting the source, SSM reduces demands on the network and improves security.
Multicast Listener Discovery (MLD) is a component of the Internet Protocol Version 6 (IPv6) suite. MLD is used by IPv6 routers for discovering multicast listeners on a directly attached link, much like Internet Group Management Protocol (IGMP) is used in IPv4. The protocol is embedded in ICMPv6 instead of using a separate protocol. MLDv1 is similar to IGMPv2 and MLDv2 similar to IGMPv3. The protocol is described in RFC 3810 which has been updated by RFC 4604.
6over4 is an IPv6 transition mechanism meant to transmit IPv6 packets between dual-stack nodes on top of a multicast-enabled IPv4 network. IPv4 is used as a virtual data link layer on which IPv6 can be run.
ISATAP is an IPv6 transition mechanism meant to transmit IPv6 packets between dual-stack nodes on top of an IPv4 network.
The Dynamic Host Configuration Protocol version 6 (DHCPv6) is a network protocol for configuring Internet Protocol version 6 (IPv6) hosts with IP addresses, IP prefixes and other configuration data required to operate in an IPv6 network. It is the IPv6 equivalent of the Dynamic Host Configuration Protocol for IPv4.
Internet Control Message Protocol version 6 (ICMPv6) is the implementation of the Internet Control Message Protocol (ICMP) for Internet Protocol version 6 (IPv6). ICMPv6 is defined in RFC 4443. ICMPv6 is an integral part of IPv6 and performs error reporting and diagnostic functions, and has a framework for extensions to implement future changes.
IGMP snooping is the process of listening to Internet Group Management Protocol (IGMP) network traffic to control delivery of IP multicasts. Network switches with IGMP snooping listen in on the IGMP conversation between hosts and routers and maintain a map of which links need which IP multicast transmission. Multicasts may be filtered from the links which do not need them, conserving bandwidth on those links.
An Internet Protocol Version 6 address is a numerical label that is used to identify a network interface of a computer or a network node participating in an IPv6 computer network.