Multivalued dependency

Last updated

In database theory, a multivalued dependency is a full constraint between two sets of attributes in a relation.

Contents

In contrast to the functional dependency, the multivalued dependency requires that certain tuples be present in a relation. Therefore, a multivalued dependency is a special case of tuple-generating dependency. The multivalued dependency plays a role in the 4NF database normalization.

A multivalued dependency is a special case of a join dependency, with only two sets of values involved, i.e. it is a binary join dependency.

A multivalued dependency exists when there are at least three attributes (like X,Y and Z) in a relation and for a value of X there is a well defined set of values of Y and a well defined set of values of Z. However, the set of values of Y is independent of set Z and vice versa.

Formal definition

The formal definition is as follows: [1]

Let be a relation schema and let and be sets of attributes. The multivalued dependency (" multidetermines ") holds on if, for any legal relation and all pairs of tuples and in such that , there exist tuples and in such that:

Informally, if one denotes by the tuple having values for collectively equal to , then whenever the tuples and exist in , the tuples and should also exist in .

The multivalued dependency can be schematically depicted as shown below:

Example

Consider this example of a relation of university courses, the books recommended for the course, and the lecturers who will be teaching the course:

University courses
CourseBookLecturer
AHASilberschatzJohn D
AHANederpeltJohn D
AHASilberschatzWilliam M
AHANederpeltWilliam M
AHASilberschatzChristian G
AHANederpeltChristian G
OSOSilberschatzJohn D
OSOSilberschatzWilliam M

Because the lecturers attached to the course and the books attached to the course are independent of each other, this database design has a multivalued dependency; if we were to add a new book to the AHA course, we would have to add one record for each of the lecturers on that course, and vice versa.
Put formally, there are two multivalued dependencies in this relation: {course}  {book} and equivalently {course}  {lecturer}.
Databases with multivalued dependencies thus exhibit redundancy. In database normalization, fourth normal form requires that for every nontrivial multivalued dependency X  Y, X is a superkey. A multivalued dependency XY is trivial if Y is a subset of X, or if is the whole set of attributes of the relation.

Properties

The following also involve functional dependencies:

The above rules are sound and complete.

Definitions

Full constraint
A constraint which expresses something about all attributes in a database. (In contrast to an embedded constraint.) That a multivalued dependency is a full constraint follows from its definition, as where it says something about the attributes .
Tuple-generating dependency
A dependency which explicitly requires certain tuples to be present in the relation.
Trivial multivalued dependency 1
A multivalued dependency which involves all the attributes of a relation i.e.. A trivial multivalued dependency implies, for tuples and , tuples and which are equal to and .
Trivial multivalued dependency 2
A multivalued dependency for which .

Related Research Articles

The relational model (RM) is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, where all data is represented in terms of tuples, grouped into relations. A database organized in terms of the relational model is a relational database.

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

In relational database theory, a functional dependency is the following constraint between two attribute sets in a relation: Given a relation R and attribute sets , X is said to functionally determineY if each X value is associated with precisely one Y value. R is then said to satisfy the functional dependency XY. Equivalently, the projection is a function, that is, Y is a function of X. In simple words, if the values for the X attributes are known, then the values for the Y attributes corresponding to x can be determined by looking them up in any tuple of R containing x. Customarily X is called the determinant set and Y the dependent set. A functional dependency FD: XY is called trivial if Y is a subset of X.

A candidate key, or simply a key, of a relational database is any set of columns that have a unique combination of values in each row, with the additional constraint that removing any column could produce duplicate combinations of values.

<span class="mw-page-title-main">Lambda cube</span>

In mathematical logic and type theory, the λ-cube is a framework introduced by Henk Barendregt to investigate the different dimensions in which the calculus of constructions is a generalization of the simply typed λ-calculus. Each dimension of the cube corresponds to a new kind of dependency between terms and types. Here, "dependency" refers to the capacity of a term or type to bind a term or type. The respective dimensions of the λ-cube correspond to:

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below.

In computer science, a Wirth–Weber relationship between a pair of symbols is necessary to determine if a formal grammar is a simple precedence grammar. In such a case, the simple precedence parser can be used. The relationship is named after computer scientists Niklaus Wirth and Helmut Weber.

<span class="mw-page-title-main">Duffing equation</span> Non-linear second order differential equation and its attractor

The Duffing equation, named after Georg Duffing (1861–1944), is a non-linear second-order differential equation used to model certain damped and driven oscillators. The equation is given by where the (unknown) function is the displacement at time t, is the first derivative of with respect to time, i.e. velocity, and is the second time-derivative of i.e. acceleration. The numbers and are given constants.

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter D stands for Darstellung, which means "representation" in German.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In the following we solve the second-order differential equation called the hypergeometric differential equation using Frobenius method, named after Ferdinand Georg Frobenius. This is a method that uses the series solution for a differential equation, where we assume the solution takes the form of a series. This is usually the method we use for complicated ordinary differential equations.

In mathematics, Racah polynomials are orthogonal polynomials named after Giulio Racah, as their orthogonality relations are equivalent to his orthogonality relations for Racah coefficients.

Head grammar (HG) is a grammar formalism introduced in Carl Pollard (1984) as an extension of the context-free grammar class of grammars. Head grammar is therefore a type of phrase structure grammar, as opposed to a dependency grammar. The class of head grammars is a subset of the linear context-free rewriting systems.

<span class="mw-page-title-main">Multivariate stable distribution</span>

The multivariate stable distribution is a multivariate probability distribution that is a multivariate generalisation of the univariate stable distribution. The multivariate stable distribution defines linear relations between stable distribution marginals. In the same way as for the univariate case, the distribution is defined in terms of its characteristic function.

<span class="mw-page-title-main">Jacobi polynomials</span> Polynomial sequence

In mathematics, Jacobi polynomials are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight on the interval . The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials.

In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus, developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. Jan Arnoldus Schouten developed the modern notation and formalism for this mathematical framework, and made contributions to the theory, during its applications to general relativity and differential geometry in the early twentieth century.

This article summarizes several identities in exterior calculus, a mathematical notation used in differential geometry.

In set theory and logic, Buchholz's ID hierarchy is a hierarchy of subsystems of first-order arithmetic. The systems/theories are referred to as "the formal theories of ν-times iterated inductive definitions". IDν extends PA by ν iterated least fixed points of monotone operators.

In mathematics, Rathjen's  psi function is an ordinal collapsing function developed by Michael Rathjen. It collapses weakly Mahlo cardinals to generate large countable ordinals. A weakly Mahlo cardinal is a cardinal such that the set of regular cardinals below is closed under . Rathjen uses this to diagonalise over the weakly inaccessible hierarchy.

References

  1. Silberschatz, Abraham; Korth, Sudarshan (2006). Database System Concepts (5th ed.). McGraw-Hill. p.  295. ISBN   0-07-124476-X.