Myopia in animals

Last updated
A rhinoceros, known for its poor eyesight Diceros bicornis.jpg
A rhinoceros, known for its poor eyesight

Some animals suffer from shortsightedness and have poor eyesight. In domestic animals, myopia, with or without astigmatism, occurs frequently. [1]

Contents

In cats

Evolved for low-light hunting, cats' eyes are proportionally enormous. Their eye size makes focusing between near and far so difficult that the muscles develop with an environmental bias. Outdoor cats tend to be farsighted, while most indoor cats are nearsighted but not myopic. Cats are unable to focus on anything less than a foot in front of them. [2]

In dogs

One animal species in which myopia occurs naturally is the domestic dog. Although the prevalence of myopia in dogs is breed dependent, approximately 8% to 15% of Labrador Retrievers are reported to have myopia. [3]

In rhinoceroses

Whereas the rhinoceros may suffer from less-than-adequate eyesight, it generally survives by concentrating with its superior hearing and sense of smell. [4] Some reports, however state that it can see better when focusing with one eye, particularly when walking, posturing, and combatting. [5]

Research

Myopia, with or without astigmatism, is the most common eye condition in horses. [1] Several types of occlusion myopia have been recorded in tree shrews, macaques, cats and rats, deciphered from several animal-inducing myopia models. Preliminary laboratory investigations using retinoscopy of 240 dogs [6] found myopic problems with varying degrees of refraction errors depending on the breed. In cases involving German Shepherds, Rottweilers and Miniature horses, the refraction errors were indicative of myopia. Nuclear sclerosis of the crystalline lens was noticed in older dogs. [6]

Experiments into newborn macaque monkeys have revealed that surgically fusing the eyelid for one year results in eye deterioration as the eye has not had a chance to grow and develop. [7] Keeping monkeys in the dark for a similar period, however, does not lead to myopia. [7] In 1996, Maurice and Mushin conducted tests on rabbits by raising their body temperatures and intraocular pressures (IOP) and noted that while younger rabbits were prone to developing myopia, older rabbits were not. [8] Some tests have revealed that myopia in some animals can be improved with eye drops containing zinc, by increasing the activity of superoxide dismutase (SOD). [9]

The rhesus monkey's vision amplitude reduction is noticeable in its second decade of life; however the condition does not impede normal functioning. Older rhesus monkeys have more difficulty accommodating this reduction in vision amplitude, encountering difficulty in focusing on objects at close range, even objects on the ground within an arm's length. [10]

Related Research Articles

<span class="mw-page-title-main">Near-sightedness</span> Problem with distance vision

Near-sightedness, also known as myopia and short-sightedness, is an eye disease where light from distant objects focuses in front of, instead of on, the retina. As a result, distant objects appear blurry while close objects appear normal. Other symptoms may include headaches and eye strain. Severe near-sightedness is associated with an increased risk of macular degeneration, retinal detachment, cataracts, and glaucoma.

<span class="mw-page-title-main">Dioptre</span> Unit of measurement of optical power

A dioptre or diopter, symbol dpt, is a unit of measurement with dimension of reciprocal length, equivalent to one reciprocal metre, 1 dpt = 1 m−1. It is normally used to express the optical power of a lens or curved mirror, which is a physical quantity equal to the reciprocal of the focal length, expressed in metres. For example, a 3-dioptre lens brings parallel rays of light to focus at 13 metre. A flat window has an optical power of zero dioptres, as it does not cause light to converge or diverge. Dioptres are also sometimes used for other reciprocals of distance, particularly radii of curvature and the vergence of optical beams.

<span class="mw-page-title-main">Far-sightedness</span> Eye condition in which light is focused behind instead of on the retina

Far-sightedness, also known as long-sightedness, hypermetropia, and hyperopia, is a condition of the eye where distant objects are seen clearly but near objects appear blurred. This blur is due to incoming light being focused behind, instead of on, the retina due to insufficient accommodation by the lens. Minor hypermetropia in young patients is usually corrected by their accommodation, without any defects in vision. But, due to this accommodative effort for distant vision, people may complain of eye strain during prolonged reading. If the hypermetropia is high, there will be defective vision for both distance and near. People may also experience accommodative dysfunction, binocular dysfunction, amblyopia, and strabismus. Newborns are almost invariably hypermetropic, but it gradually decreases as the newborn gets older.

<span class="mw-page-title-main">LASIK</span> Corrective ophthalmological surgery

LASIK or Lasik, commonly referred to as laser eye surgery or laser vision correction, is a type of refractive surgery for the correction of myopia, hyperopia, and an actual cure for astigmatism, since it is in the cornea. LASIK surgery is performed by an ophthalmologist who uses a laser or microkeratome to reshape the eye's cornea in order to improve visual acuity.

<span class="mw-page-title-main">Bates method</span> Ineffective alternative eyesight improvement therapy

The Bates method is an ineffective and potentially dangerous alternative therapy aimed at improving eyesight. Eye-care physician William Horatio Bates (1860–1931) held the erroneous belief that the extraocular muscles effected changes in focus and that "mental strain" caused abnormal action of these muscles; hence he believed that relieving such "strain" would cure defective vision. In 1952, optometry professor Elwin Marg wrote of Bates, "Most of his claims and almost all of his theories have been considered false by practically all visual scientists."

<span class="mw-page-title-main">Presbyopia</span> Medical condition associated with aging of the eye

Presbyopia is physiological insufficiency of accommodation associated with the aging of the eye that results in progressively worsening ability to focus clearly on close objects. Also known as age-related farsightedness, it affects many adults over the age of 40. A common sign of presbyopia is difficulty reading small print which results in having to hold reading material farther away. Other symptoms associated can be headaches and eyestrain. Different people will have different degrees of problems. Other types of refractive errors may exist at the same time as presbyopia. This condition is similar to hypermetropia or far-sightedness which starts in childhood and exhibits similar symptoms of blur in the vision for close objects.

<span class="mw-page-title-main">Refractive surgery</span> Surgery to treat common vision disorders

Refractive surgery is optional eye surgery used to improve the refractive state of the eye and decrease or eliminate dependency on glasses or contact lenses. This can include various methods of surgical remodeling of the cornea (keratomileusis), lens implantation or lens replacement. The most common methods today use excimer lasers to reshape the curvature of the cornea. Refractive eye surgeries are used to treat common vision disorders such as myopia, hyperopia, presbyopia and astigmatism.

<span class="mw-page-title-main">Intraocular lens</span> Lens implanted in the eye to treat cataracts or myopia

An Intraocular lens (IOL) is a lens implanted in the eye usually as part of a treatment for cataracts or for correcting other vision problems such as short sightedness and long sightedness, a form of refractive surgery. If the natural lens is left in the eye, the IOL is known as phakic, otherwise it is a pseudophakic lens. Both kinds of IOLs are designed to provide the same light-focusing function as the natural crystalline lens. This can be an alternative to LASIK, but LASIK is not an alternative to an IOL for treatment of cataracts.

Anisometropia is a condition in which a person's eyes have substantially differing refractive power. Generally, a difference in power of one diopter (1D) is the threshold for diagnosis of the condition. Patients may have up to 3D of anisometropia before the condition becomes clinically significant due to headache, eye strain, double vision or photophobia.

<span class="mw-page-title-main">Refractive error</span> Problem with focusing light accurately on the retina due to the shape of the eye

Refractive error is a problem with focusing light accurately on the retina due to the shape of the eye and/or cornea. The most common types of refractive error are near-sightedness, far-sightedness, astigmatism, and presbyopia. Near-sightedness results in far away objects being blurry, far-sightedness and presbyopia result in close objects being blurry, and astigmatism causes objects to appear stretched out or blurry. Other symptoms may include double vision, headaches, and eye strain.

<span class="mw-page-title-main">Phakic intraocular lens</span> Lens implanted in eye in addition to the natural lens

A phakic intraocular lens (PIOL) is a special kind of intraocular lens that is implanted surgically into the eye to correct myopia (nearsightedness). It is called "phakic" because the eye's natural lens is left untouched. Intraocular lenses that are implanted into eyes after the eye's natural lens has been removed during cataract surgery are known as pseudophakic.

<span class="mw-page-title-main">Orthokeratology</span> Corrective contact lenses

Orthokeratology, also referred to as Night lenses, Ortho-K, OK, Overnight Vision Correction, Corneal Refractive Therapy (CRT), Accelerated Orthokeretology, Cornea Corrective Contacts, Eccentricity Zero Molding, and Gentle Vision Shaping System (GVSS), is the use of gas-permeable contact lenses that temporarily reshape the cornea to reduce refractive errors such as myopia, hyperopia, and astigmatism.

<span class="mw-page-title-main">Eye examination</span> Series of tests assessing vision and pertaining to the eyes

An eye examination is a series of tests performed to assess vision and ability to focus on and discern objects. It also includes other tests and examinations pertaining to the eyes. Eye examinations are primarily performed by an optometrist, ophthalmologist, or an orthoptist. Health care professionals often recommend that all people should have periodic and thorough eye examinations as part of routine primary care, especially since many eye diseases are asymptomatic.

Pediatric ophthalmology is a sub-speciality of ophthalmology concerned with eye diseases, visual development, and vision care in children.

<span class="mw-page-title-main">Astigmatism</span> Type of eye defect

Astigmatism is a type of refractive error due to rotational asymmetry in the eye's refractive power. This results in distorted or blurred vision at any distance. Other symptoms can include eyestrain, headaches, and trouble driving at night. Astigmatism often occurs at birth and can change or develop later in life. If it occurs in early life and is left untreated, it may result in amblyopia.

ReLExSmall incision lenticule extraction (SMILE), second generation of ReLEx Femtosecond lenticule extraction (FLEx), is a form of laser based refractive eye surgery developed by Carl Zeiss Meditec used to correct myopia, and cure astigmatism. Although similar to LASIK laser surgery, the intrastromal procedure uses a single femtosecond laser referenced to the corneal surface to cleave a thin lenticule from the corneal stroma for manual extraction.

<span class="mw-page-title-main">Emmetropia</span> State of vision

Emmetropia is the state of vision in which a faraway object at infinity is in sharp focus with the ciliary muscle in a relaxed state. That condition of the normal eye is achieved when the refractive power of the cornea and eye lens and the axial length of the eye balance out, which focuses rays exactly on the retina, resulting in perfectly sharp distance vision. A human eye in a state of emmetropia requires no corrective lenses for distance; the vision scores well on a visual acuity test.

<span class="mw-page-title-main">Blurred vision</span> Medical condition

Blurred vision is an ocular symptom where vision becomes less precise and there is added difficulty to resolve fine details.

The eye, like any other optical system, suffers from a number of specific optical aberrations. The optical quality of the eye is limited by optical aberrations, diffraction and scatter. Correction of spherocylindrical refractive errors has been possible for nearly two centuries following Airy's development of methods to measure and correct ocular astigmatism. It has only recently become possible to measure the aberrations of the eye and with the advent of refractive surgery it might be possible to correct certain types of irregular astigmatism.

<span class="mw-page-title-main">ZC3H11B</span>

ZC3H11B also known as zinc finger CCCH-type containing protein 11B is a protein in humans that is encoded by the ZC3H11B gene. The zc3h11b gene is located on chromosome 1, on the long arm, in band 4 section 1. This protein is also known as ZC3HDC11B. The zc3h11b gene is a total of 5,134 base pairs long, and the protein is 805 amino acids in length. The zc3h11b gene has 2 exons in total.

References

  1. 1 2 Dukes, Henry Hugh; Hewitt, Earl Albon; McNutt, George William (1935). The Physiology of Domestic Animals. Comstock publishing company, inc. Retrieved 31 October 2012.
  2. "20 Things You Didnt Know About... Cats". Discover Magazine. Retrieved 2019-12-15.
  3. Black, Joanna; Browning, Sharon R.; Collins, Andrew V.; Phillips, John R. (2008-11-01). "A Canine Model of Inherited Myopia: Familial Aggregation of Refractive Error in Labrador Retrievers". Investigative Ophthalmology & Visual Science. 49 (11): 4784–4789. doi:10.1167/iovs.08-1828. ISSN   1552-5783. PMID   18566472.
  4. Kingdon, Jonathan (1988). East African Mammals: An Atlas of Evolution in Africa, Volume 3, Part B: Large Mammals. University of Chicago Press. pp. 96–97. ISBN   9780226437224.
  5. Bates, William Horatio (1920). The Cure of imperfect sight by treatment without glasses. Central Fixation Publishing Company. p.  100. Myopia in Elephants.
  6. 1 2 "Myopia and Refractive errors in Dogs" (PDF). Investigative Ophthalmology & Visual Science. Association for Research in Vision and Investigative Optholomology. 33 (8). July 1992. Retrieved 2 November 2012.
  7. 1 2 Raviola, E.; Wiesel, T. N. (1985). "An Animal Model of Myopia". New England Journal of Medicine. 312 (25): 1609–1615. doi:10.1056/NEJM198506203122505. PMID   4000200.
  8. Rosenfield, Mark; Gilmartin, Bernard (1998). Myopia and Nearwork. Elsevier Health Sciences. p. 4. ISBN   978-0-7506-3784-8 . Retrieved 31 October 2012.
  9. Schmid, Klaus (28 June 2004). Myopia Manual. Pagefree Publishing. p. 96. ISBN   978-1-58961-271-6 . Retrieved 31 October 2012.
  10. Rawlins, Richard G. (1986). The Cayo Santiago Macaques: History, Behavior, and Biology. SUNY Press. pp. 243–44. ISBN   9780887061356.