N-Lorem

Last updated
n-Lorem
FormationJanuary 8, 2020
HeadquartersCarlsbad, California
CEO
Stanley T. Crooke
Website https://www.nlorem.org/

The n-Lorem Foundation is a non-profit organization based in Carlsbad, California, established to develop personalized medicines using antisense RNA in order to treat patients of rare diseases. [1] [2]

Contents

History

The organization was founded by Stanley T. Crooke, former CEO of Ionis Pharmaceuticals and head of research at GlaxoSmithKline, in 2020. [3] The n-Lorem Foundation was established in January 2020 with the goal of taking advantage of the technology developed at Ionis to provide experimental treatments to patients suffering from rare genetic disorders. The kind of patients treated at n-Lorem are those with nano-rare diseases, a term used to describe a disease that affects 1-30 people worldwide.

Patients with extremely rare genetic disorders have numerous unique challenges to face when seeking treatment. First, traditional pathways for accessing treatment do not work for such rare diseases. In fact, there are no pathways in place for nano-rare disorders. Second, finding a diagnosis and determining the genetic cause are often significantly more time-consuming than the diagnosis of a patient with a common disease. Physicians look for patterns when diagnosing patients; it is difficult to diagnose a disease that is not in the literature. Third, developing a drug for a smaller patient population is often more expensive. Finally, nano-rare genetic disorders are often rapidly fatal. [4] The development of any drug for treating patients with nano-rare genetic disorders then, must be very efficient in time and price.

Antisense Oligonucleotides (ASOs) are designed to bind to RNA and modify proteins expression. [5] In 2022, n-Lorem teamed up with Columbia University to create Silence ALS, an initiative to develop personalized experimental therapies to treat patients with rare-genetic forms of ALS. [6]

Mission

To bring experimental antisense oligonucleotide (ASO) therapies to patients with extremely rare diseases for free, for life.

Related Research Articles

<span class="mw-page-title-main">Pelizaeus–Merzbacher disease</span> X-linked leukodystrophy

Pelizaeus–Merzbacher disease is an X-linked neurological disorder that damages oligodendrocytes in the central nervous system. It is caused by mutations in proteolipid protein 1 (PLP1), a major myelin protein. It is characterized by a decrease in the amount of insulating myelin surrounding the nerves (hypomyelination) and belongs to a group of genetic diseases referred to as leukodystrophies.

Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small fragments of nucleic acids can be manufactured as single-stranded molecules with any user-specified sequence, and so are vital for artificial gene synthesis, polymerase chain reaction (PCR), DNA sequencing, molecular cloning and as molecular probes. In nature, oligonucleotides are usually found as small RNA molecules that function in the regulation of gene expression, or are degradation intermediates derived from the breakdown of larger nucleic acid molecules.

<span class="mw-page-title-main">Duchenne muscular dystrophy</span> Type of muscular dystrophy

Duchenne muscular dystrophy (DMD) is a severe type of muscular dystrophy predominantly affecting boys. The onset of muscle weakness typically begins around age four, with rapid progression. Initially, muscle loss occurs in the thighs and pelvis, extending to the arms, which can lead to difficulties in standing up. By the age of 12, most individuals with Duchenne muscular dystrophy are unable to walk. Affected muscles may appear larger due to an increase in fat content, and scoliosis is common. Some individuals may experience intellectual disability, and females carrying a single copy of the mutated gene may show mild symptoms.

Antisense therapy is a form of treatment that uses antisense oligonucleotides (ASOs) to target messenger RNA (mRNA). ASOs are capable of altering mRNA expression through a variety of mechanisms, including ribonuclease H mediated decay of the pre-mRNA, direct steric blockage, and exon content modulation through splicing site binding on pre-mRNA. Several ASOs have been approved in the United States, the European Union, and elsewhere.

<span class="mw-page-title-main">Mipomersen</span> Drug used to treat genetic hypercholesterolemia

Mipomersen is a drug used to treat homozygous familial hypercholesterolemia and is administered by subcutaneous injection. There is a serious risk of liver damage from this drug and it can only be prescribed in the context of a risk management plan.

<span class="mw-page-title-main">ALS</span> Rare neurodegenerative disease

Amyotrophic lateral sclerosis (ALS), also known as motor neurone disease (MND) or Lou Gehrig's disease in the United States, is a rare, terminal neurodegenerative disorder that results in the progressive loss of both upper and lower motor neurons that normally control voluntary muscle contraction. ALS is the most common form of the motor neuron diseases. ALS often presents in its early stages with gradual muscle stiffness, twitches, weakness, and wasting. Motor neuron loss typically continues until the abilities to eat, speak, move, and, lastly, breathe are all lost. While only 15% of people with ALS also fully develop frontotemporal dementia, an estimated 50% face at least some minor difficulties with thinking and behavior. Depending on which of the aforementioned symptoms develops first, ALS is classified as limb-onset or bulbar-onset.

<span class="mw-page-title-main">Santaris Pharma</span> Biopharmaceutical company founded in Denmark

Santaris Pharma A/S was a biopharmaceutical company founded in 2003 in Copenhagen, Denmark. The company also had a branch in San Diego, California that opened in 2009. Created by a merger between Cureon and Pantheco, Santaris developed RNA-targeted medicines using a Locked Nucleic Acid (LNA) Drug Platform and Drug Development Engine.

<span class="mw-page-title-main">Ionis Pharmaceuticals</span> Biotechnology company

Ionis Pharmaceuticals, Inc. is a biotechnology company based in Carlsbad, California, that specializes in discovering and developing RNA-targeted therapeutics. The company has three commercially approved medicines: Spinraza (Nusinersen), Tegsedi (Inotersen), and Waylivra (Volanesorsen) and has four drugs in pivotal studies: tominersen for Huntington's disease, tofersen for SOD1-ALS, AKCEA-APO(a)-LRx for cardiovascular disease, and AKCEA-TTR-LRx for all forms of TTR amyloidosis.

<span class="mw-page-title-main">Nusinersen</span> Medication used for spinal muscular atrophy

Nusinersen, marketed as Spinraza, is a medication used in treating spinal muscular atrophy (SMA), a rare neuromuscular disorder. In December 2016, it became the first approved drug used in treating this disorder.

<span class="mw-page-title-main">Volanesorsen</span> Chemical compound

Volanesorsen, sold under the brand name Waylivra, is a triglyceride-reducing drug. It is a second-generation 2'-O-methoxyethyl (2'-MOE) chimeric antisense therapeutic oligonucleotide (ASO) that targets the messenger RNA for apolipoprotein C3 (apo-CIII).

Julianna Lisziewicz is a Hungarian immunologist. Lisziewicz headed many research teams that have discovered and produced immunotheraputic drugs to treat diseases like cancer and chronic infections like HIV/AIDS. Some of these drugs have been successfully used in clinical trials.

<span class="mw-page-title-main">C. Frank Bennett</span> American pharmacologist

C. Frank Bennett is an American pharmacologist. Bennett is currently the Senior Vice President of Research and Neurology Franchise Leader at Ionis Pharmaceuticals. He is a 2019 Breakthrough Prize winner in Life Sciences, which he shared with his collaborator Adrian R. Krainer for the development of an effective antisense oligonucleotide therapy for children with the neurodegenerative disease spinal muscular atrophy.

SYNGAP1-related intellectual disability is a monogenetic developmental and epileptic encephalopathy that affects the central nervous system. Symptoms include intellectual disability, epilepsy, autism, sensory processing deficits, hypotonia and unstable gait.

<span class="mw-page-title-main">Cure Rare Disease</span>

Cure Rare Disease is a non-profit biotechnology company based in Boston, Massachusetts that is working to create novel therapeutics using gene therapy, gene editing and antisense oligonucleotides to treat people impacted by rare and ultra-rare genetic neuromuscular conditions.

Toshifumi (Toshi) Yokota is a biomedical scientist and professor of medical genetics at the University of Alberta, also holding the titles of the Friends of Garrett Cumming Research & Muscular Dystrophy Canada Endowed Research Chair and the Henri M. Toupin Chair in Neurological Science. Known for pioneering research in antisense therapy for muscular dystrophy that led to the development of an FDA-approved drug viltolarsen, research interests encompass precision medicine for muscular dystrophy and genetic diseases. Publications exceed 100 refereed papers and patents, with contributions as co-editor to three books in the Methods in Molecular Biology series from Humana Press, Springer-Nature, Roles include fellow of the Canadian Academy of Health Sciences, a member of the editorial boards for numerous journals, a member of the Medical and Scientific Advisory Committee of Muscular Dystrophy Canada, chief scientific officer of OligomicsTx, and a co-founder of the Canadian Neuromuscular Network (CAN-NMD).

<span class="mw-page-title-main">Ultragenyx</span> American biopharmaceutical company

Ultragenyx is an American biopharmaceutical company involved in the research and development of novel products for treatment of rare and ultra-rare genetic diseases for which there are typically no approved treatments and high unmet medical need. The company works with multiple drug modalities including biologics, small molecule, gene therapies, and ASO and mRNAs in the disease categories of bone, endocrine, metabolic, muscle and CNS diseases.

Gapmers are short DNA antisense oligonucleotide structures with RNA-like segments on both sides of the sequence. These linear pieces of genetic information are designed to hybridize to a target piece of RNA and silence the gene through the induction of RNase H cleavage. Binding of the gapmer to the target has a higher affinity due to the modified RNA flanking regions, as well as resistance to degradation by nucleases. Gapmers are currently being developed as therapeutics for a variety of cancers, viruses, and other chronic genetic disorders.

ncRNA therapy

A majority of the human genome is made up of non-protein coding DNA. It infers that such sequences are not commonly employed to encode for a protein. However, even though these regions do not code for protein, they have other functions and carry necessary regulatory information.They can be classified based on the size of the ncRNA. Small noncoding RNA is usually categorized as being under 200 bp in length, whereas long noncoding RNA is greater than 200bp. In addition, they can be categorized by their function within the cell; Infrastructural and Regulatory ncRNAs. Infrastructural ncRNAs seem to have a housekeeping role in translation and splicing and include species such as rRNA, tRNA, snRNA.Regulatory ncRNAs are involved in the modification of other RNAs.

SLC6A1 epileptic encephalopathy is a genetic disorder characterised by the loss-of-function of one copy of the human SLC6A1 gene. SLC6A1 epileptic encephalopathy can typically manifest itself with early onset seizures and it can also be characterised by mild to severe learning disability. Not all manifestations of the conditions are present in one given patient.

Stephen Donald Wilton, also known as Steve Wilton, is an Australian molecular biologist and academic, serving as the Foundation Professor of Molecular Therapy at Murdoch University and adjunct professor at the University of Western Australia (UWA). He also fulfills dual roles as a Director at the Perron Institute for Neurological and Translational Science and deputy director at Murdoch's Centre for Molecular Medicine and Innovative Therapeutics (CMMIT).

References

  1. Wosen, Jonathan (September 16, 2021). "A devastating rare disease. A medicine created just for her son. Will it work?". The San Diego Union-Tribune . Retrieved October 6, 2022.
  2. Harold, Luker (December 7, 2020). "Local nonprofit helping patients with ultra-rare diseases". Del Mar Times. Retrieved October 6, 2022.
  3. Whitlock, Jared (January 8, 2020). "With $4M in Funding, n-Lorem Foundation to Take on Rare Genetic Diseases". San Diego Business Journal . Retrieved October 6, 2022.
  4. Crooke, Stanley T. (June 2021). "A call to arms against ultra-rare diseases". Nature Biotechnology. 39 (6): 671–677. doi: 10.1038/s41587-021-00945-0 . ISSN   1546-1696. PMID   34089038. S2CID   235346054.
  5. Rinaldi, Carlo; Wood, Matthew J. A. (January 2018). "Antisense oligonucleotides: the next frontier for treatment of neurological disorders". Nature Reviews Neurology. 14 (1): 9–21. doi:10.1038/nrneurol.2017.148. ISSN   1759-4766. PMID   29192260. S2CID   28579577.
  6. "New Initiative to Develop Personalized Therapies for People with Rare Genetic Forms of ALS". Columbia University Irving Medical Center. May 6, 2022. Retrieved October 6, 2022.