Naive semantics

Last updated

Naive semantics is an approach used in computer science for representing basic knowledge about a specific domain, and has been used in applications such as the representation of the meaning of natural language sentences in artificial intelligence applications. In a general setting the term has been used to refer to the use of a limited store of generally understood knowledge about a specific domain in the world, and has been applied to fields such as the knowledge based design of data schemas. [1] [2]

In natural language understanding, naive semantics involves the use of a lexical theory which maps each word sense to a simple theory (or set of assertions) about the objects or events of reference. In this sense, naive semantic theory is based upon a particular language, its syntax and its word senses. For instance the word "water" and the assertion water(X) may be associated with the three predicates clear(X), liquid(X) and tasteless(X).

Related Research Articles

Knowledge representation and reasoning is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build. Knowledge representation and reasoning also incorporates findings from logic to automate various kinds of reasoning, such as the application of rules or the relations of sets and subsets.

Logic programming is a programming paradigm which is largely based on formal logic. Any program written in a logic programming language is a set of sentences in logical form, expressing facts and rules about some problem domain. Major logic programming language families include Prolog, answer set programming (ASP) and Datalog. In all of these languages, rules are written in the form of clauses:

<span class="mw-page-title-main">Natural language processing</span> Field of linguistics and computer science

Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data. The goal is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.

<span class="mw-page-title-main">Programming language</span> Language for communicating instructions to a machine

A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language.

Semantics is the study of reference, meaning, or truth. The term can be used to refer to subfields of several distinct disciplines, including philosophy, linguistics and computer science.

<span class="mw-page-title-main">Semantic network</span> Knowledge base that represents semantic relations between concepts in a network

A semantic network, or frame network is a knowledge base that represents semantic relations between concepts in a network. This is often used as a form of knowledge representation. It is a directed or undirected graph consisting of vertices, which represent concepts, and edges, which represent semantic relations between concepts, mapping or connecting semantic fields. A semantic network may be instantiated as, for example, a graph database or a concept map. Typical standardized semantic networks are expressed as semantic triples.

The Semantic Web, sometimes known as Web 3.0, is an extension of the World Wide Web through standards set by the World Wide Web Consortium (W3C). The goal of the Semantic Web is to make Internet data machine-readable.

A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be scientific, belong to a non-scientific discipline, or no discipline at all. Depending on the context, a theory's assertions might, for example, include generalized explanations of how nature works. The word has its roots in ancient Greek, but in modern use it has taken on several related meanings.

In computer science and information science, an ontology encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains of discourse. More simply, an ontology is a way of showing the properties of a subject area and how they are related, by defining a set of concepts and categories that represent the subject.

Word-sense disambiguation (WSD) is the process of identifying which sense of a word is meant in a sentence or other segment of context. In human language processing and cognition, it is usually subconscious/automatic but can often come to conscious attention when ambiguity impairs clarity of communication, given the pervasive polysemy in natural language. In computational linguistics, it is an open problem that affects other computer-related writing, such as discourse, improving relevance of search engines, anaphora resolution, coherence, and inference.

Natural-language understanding (NLU) or natural-language interpretation (NLI) is a subtopic of natural-language processing in artificial intelligence that deals with machine reading comprehension. Natural-language understanding is considered an AI-hard problem.

In artificial intelligence (AI), commonsense reasoning is a human-like ability to make presumptions about the type and essence of ordinary situations humans encounter every day. These assumptions include judgments about the nature of physical objects, taxonomic properties, and peoples' intentions. A device that exhibits commonsense reasoning might be capable of drawing conclusions that are similar to humans' folk psychology and naive physics.

In artificial intelligence research, commonsense knowledge consists of facts about the everyday world, such as "Lemons are sour", that all humans are expected to know. It is currently an unsolved problem in Artificial General Intelligence. The first AI program to address common sense knowledge was Advice Taker in 1959 by John McCarthy.

Frame semantics is a theory of linguistic meaning developed by Charles J. Fillmore that extends his earlier case grammar. It relates linguistic semantics to encyclopedic knowledge. The basic idea is that one cannot understand the meaning of a single word without access to all the essential knowledge that relates to that word. For example, one would not be able to understand the word "sell" without knowing anything about the situation of commercial transfer, which also involves, among other things, a seller, a buyer, goods, money, the relation between the money and the goods, the relations between the seller and the goods and the money, the relation between the buyer and the goods and the money and so on. Thus, a word activates, or evokes, a frame of semantic knowledge relating to the specific concept to which it refers.

<span class="mw-page-title-main">IDEF1X</span>

Integration DEFinition for information modeling (IDEF1X) is a data modeling language for the development of semantic data models. IDEF1X is used to produce a graphical information model which represents the structure and semantics of information within an environment or system.

In semantics, semiotics, philosophy of language, metaphysics, and metasemantics, meaning "is a relationship between two sorts of things: signs and the kinds of things they intend, express, or signify".

The following outline is provided as an overview of and topical guide to natural-language processing:

<span class="mw-page-title-main">Word embedding</span> Method in natural language processing

In natural language processing (NLP), word embedding is a term used for the representation of words for text analysis, typically in the form of a real-valued vector that encodes the meaning of the word such that the words that are closer in the vector space are expected to be similar in meaning. Word embeddings can be obtained using a set of language modeling and feature learning techniques where words or phrases from the vocabulary are mapped to vectors of real numbers.

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

A semantic decomposition is an algorithm that breaks down the meanings of phrases or concepts into less complex concepts. The result of a semantic decomposition is a representation of meaning. This representation can be used for tasks, such as those related to artificial intelligence or machine learning. Semantic decomposition is common in natural language processing applications.

References

  1. Storey, V. C.; Goldstein, R. C.; Ullrich, H. (2002). "Naive Semantics to Support Automated Database Design". IEEE Transactions on Knowledge and Data Engineering. 14 (1): 1–12. doi:10.1109/69.979969. ISSN   1041-4347.
  2. Dahlgren, Kathleen (1988). Naive semantics for natural language understanding. Boston: Kluwer Academic Publishers. ISBN   0-89838-287-4. OCLC   18192009.