Napierian logarithm

Last updated
A plot of the Napierian logarithm for inputs between 0 and 10 . NapLog.png
A plot of the Napierian logarithm for inputs between 0 and 10 .
The 19 degree pages from Napier's 1614 table of logarithms of trigonometric functions Mirifici Logarithmorum Canonis Descriptio Napier's Mirici Logarithmorum table for 19 deg.agr.jpg
The 19 degree pages from Napier's 1614 table of logarithms of trigonometric functions Mirifici Logarithmorum Canonis Descriptio

The term Napierian logarithm or Naperian logarithm, named after John Napier, is often used to mean the natural logarithm. Napier did not introduce this natural logarithmic function, although it is named after him. [1] [2] However, if it is taken to mean the "logarithms" as originally produced by Napier, it is a function given by (in terms of the modern natural logarithm):

Contents

The Napierian logarithm satisfies identities quite similar to the modern logarithm, such as [3]

or

In Napier's 1614 Mirifici Logarithmorum Canonis Descriptio , he provides tables of logarithms of sines for 0 to 90°, where the values given (columns 3 and 5) are

Properties

Napier's "logarithm" is related to the natural logarithm by the relation

and to the common logarithm by

Note that

and

Napierian logarithms are essentially natural logarithms with decimal points shifted 7 places rightward and with sign reversed. For instance the logarithmic values

would have the corresponding Napierian logarithms:

For further detail, see history of logarithms.

Related Research Articles

<span class="mw-page-title-main">Logarithm</span> Inverse of the exponential function

In mathematics, the logarithm is the inverse function to exponentiation. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 103, the logarithm base 10 of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logbx, or even without the explicit base, log x, when no confusion is possible, or when the base does not matter such as in big O notation.

<span class="mw-page-title-main">Natural logarithm</span> Logarithm to the base of the mathematical constant e

The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

<span class="mw-page-title-main">Neper</span> Logarithmic unit for ratios of measurements of physical field and power quantities

The neper is a logarithmic unit for ratios of measurements of physical field and power quantities, such as gain and loss of electronic signals. The unit's name is derived from the name of John Napier, the inventor of logarithms. As is the case for the decibel and bel, the neper is a unit defined in the international standard ISO 80000. It is not part of the International System of Units (SI), but is accepted for use alongside the SI.

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.

<span class="mw-page-title-main">Common logarithm</span> Mathematical function

In mathematics, the common logarithm is the logarithm with base 10. It is also known as the decadic logarithm and as the decimal logarithm, named after its base, or Briggsian logarithm, after Henry Briggs, an English mathematician who pioneered its use, as well as standard logarithm. Historically, it was known as logarithmus decimalis or logarithmus decadis. It is indicated by log(x), log10 (x), or sometimes Log(x) with a capital L (however, this notation is ambiguous, since it can also mean the complex natural logarithmic multi-valued function). On calculators, it is printed as "log", but mathematicians usually mean natural logarithm (logarithm with base e ≈ 2.71828) rather than common logarithm when they write "log". To mitigate this ambiguity, the ISO 80000 specification recommends that log10 (x) should be written lg(x), and loge (x) should be ln(x).

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter and a scale parameter .
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.
<span class="mw-page-title-main">Binary logarithm</span> Exponent of a power of two

In mathematics, the binary logarithm is the power to which the number 2 must be raised to obtain the value n. That is, for any real number x,

<span class="mw-page-title-main">Gumbel distribution</span> Particular case of the generalized extreme value distribution

In probability theory and statistics, the Gumbel distribution is used to model the distribution of the maximum of a number of samples of various distributions.

In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula

<span class="mw-page-title-main">Tetration</span> Repeated exponentiation

In mathematics, tetration is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though and the left-exponent xb are common.

In the mathematical field of complex analysis, a branch point of a multi-valued function is a point such that if the function is n-valued at that point, all of its neighborhoods contain a point that has more than n values. Multi-valued functions are rigorously studied using Riemann surfaces, and the formal definition of branch points employs this concept.

<span class="mw-page-title-main">Versine</span> 1 minus the cosine of an angle

The versine or versed sine is a trigonometric function found in some of the earliest trigonometric tables. The versine of an angle is 1 minus its cosine.

In statistics, G-tests are likelihood-ratio or maximum likelihood statistical significance tests that are increasingly being used in situations where chi-squared tests were previously recommended.

In mathematical statistics, the Kullback–Leibler divergence, denoted , is a type of statistical distance: a measure of how one probability distribution P is different from a second, reference probability distribution Q. A simple interpretation of the KL divergence of P from Q is the expected excess surprise from using Q as a model when the actual distribution is P. While it is a distance, it is not a metric, the most familiar type of distance: it is not symmetric in the two distributions, and does not satisfy the triangle inequality. Instead, in terms of information geometry, it is a type of divergence, a generalization of squared distance, and for certain classes of distributions, it satisfies a generalized Pythagorean theorem.

In statistics, the Bayesian information criterion (BIC) or Schwarz information criterion is a criterion for model selection among a finite set of models; models with lower BIC are generally preferred. It is based, in part, on the likelihood function and it is closely related to the Akaike information criterion (AIC).

<span class="mw-page-title-main">Logarithmic mean</span> Difference of two numbers divided by the logarithm of their quotient

In mathematics, the logarithmic mean is a function of two non-negative numbers which is equal to their difference divided by the logarithm of their quotient. This calculation is applicable in engineering problems involving heat and mass transfer.

<span class="mw-page-title-main">Complex logarithm</span> Logarithm of a complex number

In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to one of the following, which are strongly related:

<span class="mw-page-title-main">History of logarithms</span> Development of the mathematical function

The history of logarithms is the story of a correspondence between multiplication on the positive real numbers and addition on the real number line that was formalized in seventeenth century Europe and was widely used to simplify calculation until the advent of the digital computer. The Napierian logarithms were published first in 1614. E. W. Hobson called it "one of the very greatest scientific discoveries that the world has seen." Henry Briggs introduced common logarithms, which were easier to use. Tables of logarithms were published in many forms over four centuries. The idea of logarithms was also used to construct the slide rule, which became ubiquitous in science and engineering until the 1970s. A breakthrough generating the natural logarithm was the result of a search for an expression of area against a rectangular hyperbola, and required the assimilation of a new function into standard mathematics.

In mathematics, the super-logarithm is one of the two inverse functions of tetration. Just as exponentiation has two inverse functions, roots and logarithms, tetration has two inverse functions, super-roots and super-logarithms. There are several ways of interpreting super-logarithms:

In mathematics, the set of positive real numbers, is the subset of those real numbers that are greater than zero. The non-negative real numbers, also include zero. Although the symbols and are ambiguously used for either of these, the notation or for and or for has also been widely employed, is aligned with the practice in algebra of denoting the exclusion of the zero element with a star, and should be understandable to most practicing mathematicians.

References

  1. Larson, Ron; Hostetler, Robert P.; Edwards, Bruce H. (2008). Essential Calculus Early Transcendental Functions. U.S.A: Richard Stratton. p. 119. ISBN   978-0-618-87918-2.
  2. Ernest William Hobson (1914), John Napier and the Invention of Logarithms, 1614 (PDF), Cambridge: The University Press
  3. Roegel, Denis. "Napier's ideal construction of the logarithms". HAL. INRIA. Retrieved 7 May 2018.