The Near-term digital radio (NTDR) program provided a prototype mobile ad hoc network (MANET) radio system to the United States Army, starting in the 1990s. The MANET protocols were provided by Bolt, Beranek and Newman; the radio hardware was supplied by ITT. [1] These systems have been fielded by the United Kingdom as the High-capacity data radio (HCDR) and by the Israelis as the Israeli data radio. They have also been purchased by a number of other countries for experimentation.
A mobile ad hoc network (MANET), also known as wireless ad hoc network or ad hoc wireless network, is a continuously self-configuring, infrastructure-less network of mobile devices connected wirelessly.
High-capacity data radio (HCDR) is a development of the Near-Term Digital Radio (NTDR) for the UK government as a part of the Bowman communication system. It is a secure wideband 225–450 MHz UHF radio system that provides a self-managing IP-based Internet backbone capability without the need for other infrastructure communications.
The NTDR protocols consist of two components: clustering and routing. The clustering algorithms dynamically organize a given network into cluster heads and cluster members. The cluster heads create a backbone; the cluster members use the services of this backbone to send and receive packets. The cluster heads use a link-state routing algorithm to maintain the integrity of their backbone and to track the locations of cluster members.
Routing is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet.
In mathematics and computer science, an algorithm is an unambiguous specification of how to solve a class of problems. Algorithms can perform calculation, data processing, automated reasoning, and other tasks.
The NTDR routers also use a variant of Open Shortest Path First (OSPF) that is called Radio-OSPF (ROSPF). ROSPF does not use the OSPF hello protocol for link discovery, etc. Instead, OSPF adjacencies are created and destroyed as a function of MANET information that is distributed by the NTDR routers, both cluster heads and cluster members. It also supported multicasting. [2]
Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS). It is defined as OSPF Version 2 in RFC 2328 (1998) for IPv4. The updates for IPv6 are specified as OSPF Version 3 in RFC 5340 (2008). OSPF supports the Classless Inter-Domain Routing (CIDR) addressing model.
In computer networking, multicast is group communication where data transmission is addressed to a group of destination computers simultaneously. Multicast can be one-to-many or many-to-many distribution. Multicast should not be confused with physical layer point-to-multipoint communication.
Intermediate System to Intermediate System is a routing protocol designed to move information efficiently within a computer network, a group of physically connected computers or similar devices. It accomplishes this by determining the best route for data through a packet-switched network.
A wireless mesh network (WMN) is a communications network made up of radio nodes organized in a mesh topology. It is also a form of wireless ad hoc network.
A content delivery network or content distribution network (CDN) is a geographically distributed network of proxy servers and their data centers. The goal is to provide high availability and high performance by distributing the service spatially relative to end-users. CDNs serve a large portion of the Internet content today, including web objects, downloadable objects, applications, live streaming media, on-demand streaming media, and social media sites.
An overlay network is a computer network that is built on top of another network.
Van Jacobson is an American computer scientist, renowned for his work on TCP/IP network performance and scaling. He is one of the primary contributors to the TCP/IP protocol stack—the technological foundation of today’s Internet. Since 2013, Jacobson is an adjunct professor at the University of California, Los Angeles (UCLA) working on Named Data Networking.
The Survivable Radio Network (SURAN) project was sponsored by DARPA in the 1980s to develop a set of mobile ad hoc network (MANET) radio-routers, then known as "packet radios". It was a follow-on to DARPA's earliler PRNET project. The program began in 1983 with the following goals:
In computer networking, a reliable protocol is a protocol which notifies the sender whether or not the delivery of data to intended recipients was successful. Reliability is a synonym for assurance, which is the term used by the ITU and ATM Forum.
The Hazy-Sighted Link State Routing Protocol (HSLS) is a wireless mesh network routing protocol being developed by the CUWiN Foundation. This is an algorithm allowing computers communicating via digital radio in a mesh network to forward messages to computers that are out of reach of direct radio contact. Its network overhead is theoretically optimal, utilizing both proactive and reactive link-state routing to limit network updates in space and time. Its inventors believe it is a more efficient protocol to route wired networks as well. HSLS was invented by researchers at BBN Technologies.
Link State Packet (LSP) is a packet of information generated by a network router in a link state routing protocol that lists the router's neighbors. Link state packet can also be further defined as special datagrams that determine the names of and the cost or distance to any neighboring routers and associated networks. They are used to efficiently determine what the new neighbor is, if a link failure occurs, and the cost of changing a link if the need arises. LSPs are queued for transmission, and must time out at about the same time. They must be acknowledged, and can be distributed throughout the network, but cannot use the routing database.
Flooding is used in computer networks routing algorithm in which every incoming packet is sent through every outgoing link except the one it arrived on.
Vehicular ad-hoc networks (VANETs) are created by applying the principles of mobile ad hoc networks (MANETs) – the spontaneous creation of a wireless network for vehicle-to-vehicle (V2V) data exchange – to the domain of vehicles. VANETs were first mentioned and introduced in 2001 under "car-to-car ad-hoc mobile communication and networking" applications, where networks can be formed and information can be relayed among cars. It was shown that vehicle-to-vehicle and vehicle-to-roadside communications architectures will co-exist in VANETs to provide road safety, navigation, and other roadside services. VANETs are a key part of the intelligent transportation systems (ITS) framework. Sometimes, VANETs are referred as Intelligent Transportation Networks
A wireless ad hoc network (WANET) or MANET is a decentralised type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers in wired networks or access points in managed (infrastructure) wireless networks. Instead, each node participates in routing by forwarding data for other nodes, so the determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.
In the Windows operating system, ad-hoc is a communication mode (setting) that allows computers to directly communicate with each other without a router.
Wireless mobile ad hoc networks are self-configuring, dynamic networks in which nodes are free to move. Wireless networks lack the complexities of infrastructure setup and administration, enabling devices to create and join networks "on the fly" – anywhere, anytime.
A routing protocol specifies how routers communicate with each other, distributing information that enables them to select routes between any two nodes on a computer network. Routers perform the "traffic directing" functions on the Internet; data packets are forwarded through the networks of the internet from router to router until they reach their destination computer. Routing algorithms determine the specific choice of route. Each router has a prior knowledge only of networks attached to it directly. A routing protocol shares this information first among immediate neighbors, and then throughout the network. This way, routers gain knowledge of the topology of the network. The ability of routing protocols to dynamically adjust to changing conditions such as disabled data lines and computers and route data around obstructions is what gives the Internet its survivability and reliability.
Data center bridging (DCB) is a set of enhancements to the Ethernet local area network communication protocol for use in data center environments, in particular for use with clustering and storage area networks.
A mobile wireless sensor network (MWSN) can simply be defined as a wireless sensor network (WSN) in which the sensor nodes are mobile. MWSNs are a smaller, emerging field of research in contrast to their well-established predecessor. MWSNs are much more versatile than static sensor networks as they can be deployed in any scenario and cope with rapid topology changes. However, many of their applications are similar, such as environment monitoring or surveillance. Commonly, the nodes consist of a radio transceiver and a microcontroller powered by a battery, as well as some kind of sensor for detecting light, heat, humidity, temperature, etc.
Associativity-based routing is a mobile routing protocol invented for wireless ad hoc networks, also known as mobile ad hoc networks (MANETs) and wireless mesh networks. ABR was invented in 1993, filed for a U.S. patent in 1996, and granted the patent in 1999. ABR was invented by Chai Keong Toh while doing his Ph.D. at Cambridge University.
In computing, a Digital Object Identifier or DOI is a persistent identifier or handle used to identify objects uniquely, standardized by the International Organization for Standardization (ISO). An implementation of the Handle System, DOIs are in wide use mainly to identify academic, professional, and government information, such as journal articles, research reports and data sets, and official publications though they also have been used to identify other types of information resources, such as commercial videos.