Nearly completely decomposable Markov chain

Last updated

In probability theory, a nearly completely decomposable (NCD) Markov chain is a Markov chain where the state-space can be partitioned in such a way that movement within a partition occurs much more frequently than movement between partitions. [1] Particularly efficient algorithms exist to compute the stationary distribution of Markov chains with this property. [2]

Contents

Definition

Ando and Fisher define a completely decomposable matrix as one where "an identical rearrangement of rows and columns leaves a set of square submatrices on the principal diagonal and zeros everywhere else." A nearly completely decomposable matrix is one where an identical rearrangement of rows and columns leaves a set of square submatrices on the principal diagonal and small nonzeros everywhere else. [3] [4]

Example

A Markov chain with transition matrix

is nearly completely decomposable if ε is small (say 0.1). [5]

Stationary distribution algorithms

Special-purpose iterative algorithms have been designed for NCD Markov chains [2] though the multi–level algorithm, a general purpose algorithm, [6] has been shown experimentally to be competitive and in some cases significantly faster. [7]

See also

Related Research Articles

In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It allows characterizing some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants . The determinant of a matrix A is denoted det(A), det A, or |A|.

In linear algebra, the Cholesky decomposition or Cholesky factorization is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations. It was discovered by André-Louis Cholesky for real matrices, and posthumously published in 1924. When it is applicable, the Cholesky decomposition is roughly twice as efficient as the LU decomposition for solving systems of linear equations.

In linear algebra, an n-by-n square matrix A is called invertible, if there exists an n-by-n square matrix B such that

In mathematics, and in particular linear algebra, the Moore–Penrose inverse of a matrix is the most widely known generalization of the inverse matrix. It was independently described by E. H. Moore in 1920, Arne Bjerhammar in 1951, and Roger Penrose in 1955. Earlier, Erik Ivar Fredholm had introduced the concept of a pseudoinverse of integral operators in 1903. When referring to a matrix, the term pseudoinverse, without further specification, is often used to indicate the Moore–Penrose inverse. The term generalized inverse is sometimes used as a synonym for pseudoinverse.

In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices. Any matrix may be interpreted as a block matrix in one or more ways, with each interpretation defined by how its rows and columns are partitioned.

In mathematics, the determinant of a skew-symmetric matrix can always be written as the square of a polynomial in the matrix entries, a polynomial with integer coefficients that only depend on the size of the matrix. The value of this polynomial, when applied to the coefficients of a skew-symmetric matrix, is called the Pfaffian of that matrix. The term Pfaffian was introduced by Cayley (1852) who indirectly named them after Johann Friedrich Pfaff. The Pfaffian is nonvanishing only for 2n × 2n skew-symmetric matrices, in which case it is a polynomial of degree n.

A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to the least value of a set of exponential random variables, one for each possible state it can move to, with the parameters determined by the current state.

In mathematics, the square root of a matrix extends the notion of square root from numbers to matrices. A matrix B is said to be a square root of A if the matrix product BB is equal to A.

Semidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization of a linear objective function over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron.

A mixed model, mixed-effects model or mixed error-component model is a statistical model containing both fixed effects and random effects. These models are useful in a wide variety of disciplines in the physical, biological and social sciences. They are particularly useful in settings where repeated measurements are made on the same statistical units, or where measurements are made on clusters of related statistical units. Because of their advantage in dealing with missing values, mixed effects models are often preferred over more traditional approaches such as repeated measures analysis of variance.

In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix. The product sometimes includes a permutation matrix as well. LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix. The LU decomposition was introduced by the Polish mathematician Tadeusz Banachiewicz in 1938.

The Gittins index is a measure of the reward that can be achieved through a given stochastic process with certain properties, namely: the process has an ultimate termination state and evolves with an option, at each intermediate state, of terminating. Upon terminating at a given state, the reward achieved is the sum of the probabilistic expected rewards associated with every state from the actual terminating state to the ultimate terminal state, inclusive. The index is a real scalar.

In probability theory, lumpability is a method for reducing the size of the state space of some continuous-time Markov chains, first published by Kemeny and Snell.

Because matrix multiplication is such a central operation in many numerical algorithms, much work has been invested in making matrix multiplication algorithms efficient. Applications of matrix multiplication in computational problems are found in many fields including scientific computing and pattern recognition and in seemingly unrelated problems such as counting the paths through a graph. Many different algorithms have been designed for multiplying matrices on different types of hardware, including parallel and distributed systems, where the computational work is spread over multiple processors.

In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue is a multi-server queueing model. In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. It is a generalisation of the M/M/1 queue which considers only a single server. The model with infinitely many servers is the M/M/∞ queue.

In queueing theory, a discipline within the mathematical theory of probability, a fluid queue is a mathematical model used to describe the fluid level in a reservoir subject to randomly determined periods of filling and emptying. The term dam theory was used in earlier literature for these models. The model has been used to approximate discrete models, model the spread of wildfires, in ruin theory and to model high speed data networks. The model applies the leaky bucket algorithm to a stochastic source.

Algorithmic cooling is an algorithmic method for transferring heat from some qubits to others or outside the system and into the environment, which results in a cooling effect. This method uses regular quantum operations on ensembles of qubits, and it can be shown that it can succeed beyond Shannon's bound on data compression. The phenomenon is a result of the connection between thermodynamics and information theory.

In queueing theory, a discipline within the mathematical theory of probability, the M/M/∞ queue is a multi-server queueing model where every arrival experiences immediate service and does not wait. In Kendall's notation it describes a system where arrivals are governed by a Poisson process, there are infinitely many servers, so jobs do not need to wait for a server. Each job has an exponentially distributed service time. It is a limit of the M/M/c queue model where the number of servers c becomes very large.

In probability theory, the matrix geometric method is a method for the analysis of quasi-birth–death processes, continuous-time Markov chain whose transition rate matrices with a repetitive block structure. The method was developed "largely by Marcel F. Neuts and his students starting around 1975."

In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables. The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.

References

  1. Kontovasilis, K. P.; Mitrou, N. M. (1995). "Markov-Modulated Traffic with Nearly Complete Decomposability Characteristics and Associated Fluid Queueing Models". Advances in Applied Probability. 27 (4): 1144–1185. doi:10.2307/1427937. JSTOR   1427937.
  2. 1 2 Koury, J. R.; McAllister, D. F.; Stewart, W. J. (1984). "Iterative Methods for Computing Stationary Distributions of Nearly Completely Decomposable Markov Chains". SIAM Journal on Algebraic and Discrete Methods . 5 (2): 164–186. doi:10.1137/0605019.
  3. Ando, A.; Fisher, F. M. (1963). "Near-Decomposability, Partition and Aggregation, and the Relevance of Stability Discussions". International Economic Review. 4 (1): 53–67. doi:10.2307/2525455. JSTOR   2525455.
  4. Courtois, P. J. (1975). "Error Analysis in Nearly-Completely Decomposable Stochastic Systems". Econometrica. 43 (4): 691–709. doi:10.2307/1913078. JSTOR   1913078.
  5. Example 1.1 from Yin, George; Zhang, Qing (2005). Discrete-time Markov chains: two-time-scale methods and applications . Springer. p.  8. ISBN   978-0-387-21948-6.
  6. Horton, G.; Leutenegger, S. T. (1994). "A multi-level solution algorithm for steady-state Markov chains". ACM SIGMETRICS Performance Evaluation Review. 22: 191–200. CiteSeerX   10.1.1.44.4560 . doi:10.1145/183019.183040.
  7. Leutenegger, Scott T.; Horton, Graham (June 1994). On the Utility of the Multi-Level Algorithm for the Solution of Nearly Completely Decomposable Markov Chains (ICASE Report No. 94-44) (PDF) (Technical report). NASA. Contractor Report 194929. Archived from the original on April 8, 2013. We present experimental results indicating that the general- purpose Multi-Level algorithm is competitive, and can be significantly faster than the special-purpose KMS algorithm when Gauss-Seidel and Gaussian Elimination are used for solving the individual blocks. Markov chains, Multi- level, Numerical solution.