Nested sequent calculus

Last updated

In structural proof theory, the nested sequent calculus is a reformulation of the sequent calculus to allow deep inference. [1]

Related Research Articles

In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning.

Proof theory is a major branch of mathematical logic and theoretical computer science that represents proofs as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of the logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.

In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies.

In mathematical logic, a sequent is a very general kind of conditional assertion.

In programming language theory and proof theory, the Curry–Howard correspondence is the direct relationship between computer programs and mathematical proofs.

In logic, a substructural logic is a logic lacking one of the usual structural rules, such as weakening, contraction, exchange or associativity. Two of the more significant substructural logics are relevance logic and linear logic.

Linear logic is a substructural logic proposed by Jean-Yves Girard as a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the constructive properties of the latter. Although the logic has also been studied for its own sake, more broadly, ideas from linear logic have been influential in fields such as programming languages, game semantics, and quantum physics, as well as linguistics, particularly because of its emphasis on resource-boundedness, duality, and interaction.

The cut-elimination theorem is the central result establishing the significance of the sequent calculus. It was originally proved by Gerhard Gentzen in his landmark 1934 paper "Investigations in Logical Deduction" for the systems LJ and LK formalising intuitionistic and classical logic respectively. The cut-elimination theorem states that any judgement that possesses a proof in the sequent calculus making use of the cut rule also possesses a cut-free proof, that is, a proof that does not make use of the cut rule.

Proof-theoretic semantics is an approach to the semantics of logic that attempts to locate the meaning of propositions and logical connectives not in terms of interpretations, as in Tarskian approaches to semantics, but in the role that the proposition or logical connective plays within the system of inference.

In proof theory, proof nets are a geometrical method of representing proofs that eliminates two forms of bureaucracy that differentiate proofs: (A) irrelevant syntactical features of regular proof calculi, and (B) the order of rules applied in a derivation. In this way, the formal properties of proof identity correspond more closely to the intuitively desirable properties. Proof nets were introduced by Jean-Yves Girard. This distinguishes proof nets from regular proof calculi such as the natural deduction calculus and the sequent calculus, where these phenomena are present.

In mathematical logic, structural proof theory is the subdiscipline of proof theory that studies proof calculi that support a notion of analytic proof, a kind of proof whose semantic properties are exposed. When all the theorems of a logic formalised in a structural proof theory have analytic proofs, then the proof theory can be used to demonstrate such things as consistency, provide decision procedures, and allow mathematical or computational witnesses to be extracted as counterparts to theorems, the kind of task that is more often given to model theory.

In logic and mathematics, a formal proof or derivation is a finite sequence of sentences, each of which is an axiom, an assumption, or follows from the preceding sentences in the sequence by a rule of inference. It differs from a natural language argument in that it is rigorous, unambiguous and mechanically verifiable. If the set of assumptions is empty, then the last sentence in a formal proof is called a theorem of the formal system. The notion of theorem is not in general effective, therefore there may be no method by which we can always find a proof of a given sentence or determine that none exists. The concepts of Fitch-style proof, sequent calculus and natural deduction are generalizations of the concept of proof.

Deep inference names a general idea in structural proof theory that breaks with the classical sequent calculus by generalising the notion of structure to permit inference to occur in contexts of high structural complexity. The term deep inference is generally reserved for proof calculi where the structural complexity is unbounded; in this article we will use non-shallow inference to refer to calculi that have structural complexity greater than the sequent calculus, but not unboundedly so, although this is not at present established terminology.

In mathematical logic, a proof calculus or a proof system is built to prove statements.

Herbrand's theorem is a fundamental result of mathematical logic obtained by Jacques Herbrand (1930). It essentially allows a certain kind of reduction of first-order logic to propositional logic. Although Herbrand originally proved his theorem for arbitrary formulas of first-order logic, the simpler version shown here, restricted to formulas in prenex form containing only existential quantifiers, became more popular.

<span class="mw-page-title-main">KeY</span>

The KeY tool is used in formal verification of Java programs. It accepts specifications written in the Java Modeling Language to Java source files. These are transformed into theorems of dynamic logic and then compared against program semantics that are likewise defined in terms of dynamic logic. KeY is significantly powerful in that it supports both interactive and fully automated correctness proofs. Failed proof attempts can be used for a more efficient debugging or verification-based testing. There have been several extensions to KeY in order to apply it to the verification of C programs or hybrid systems. KeY is jointly developed by Karlsruhe Institute of Technology, Germany; Technische Universität Darmstadt, Germany; and Chalmers University of Technology in Gothenburg, Sweden and is licensed under the GPL.

In sequent calculus, the completeness of atomic initial sequents states that initial sequents AA can be derived from only atomic initial sequents pp. This theorem plays a role analogous to eta expansion in lambda calculus, and dual to cut-elimination and beta reduction. Typically it can be established by induction on the structure of A, much more easily than cut-elimination.

<span class="mw-page-title-main">Cirquent calculus</span>

Cirquent calculus is a proof calculus that manipulates graph-style constructs termed cirquents, as opposed to the traditional tree-style objects such as formulas or sequents. Cirquents come in a variety of forms, but they all share one main characteristic feature, making them different from the more traditional objects of syntactic manipulation. This feature is the ability to explicitly account for possible sharing of subcomponents between different components. For instance, it is possible to write an expression where two subexpressions F and E, while neither one is a subexpression of the other, still have a common occurrence of a subexpression G.

In mathematical logic, focused proofs are a family of analytic proofs that arise through goal-directed proof-search, and are a topic of study in structural proof theory and reductive logic. They form the most general definition of goal-directed proof-search—in which someone chooses a formula and performs hereditary reductions until the result meets some condition. The extremal case where reduction only terminates when axioms are reached forms the sub-family of uniform proofs.

References

  1. Alwen Tiu; Egor Ianovski; Rajeev Goré. "Grammar Logics in Nested Sequent Calculus: Proof Theory and Decision Procedures". p. 1. CiteSeerX   10.1.1.1060.4978 .