Network tomography

Last updated

Network tomography is the study of a network's internal characteristics using information derived from end point data. The word tomography is used to link the field, in concept, to other processes that infer the internal characteristics of an object from external observation, as is done in MRI or PET scanning (even though the term tomography strictly refers to imaging by slicing). The field is a recent development in electrical engineering and computer science, dating from 1996. [1] Network tomography seeks to map the path data takes through the Internet by examining information from “edge nodes,” the computers in which the data are originated and from which they are requested.

Contents

The field is useful for engineers attempting to develop more efficient computer networks. Data derived from network tomography studies can be used to increase quality of service by limiting link packet loss and increasing routing optimization.

Recent developments

There have been many published papers and tools in the area of network tomography, which aim to monitor the health of various links in a network in real-time. These can be classified into loss and delay tomography. [2] [3]

Loss tomography

Loss tomography aims to find “lossy” links in a network by sending active “probes” from various vantage points in the network or the Internet. [4] [5]

Delay tomography

The area of delay tomography has also attracted attention in the recent past. It aims to find link delays using end-to-end probes sent from vantage points. This can potentially help isolate links with large queueing delays caused by congestion. [6]

More applications

Network tomography may be able to infer network topology using end-to-end probes. Topology discovery is a tradeoff between accuracy vs. overhead. With network tomography, the emphasis is to achieve as accurate a picture of the network with minimal overhead. In comparison, other network topology discovery techniques using SNMP or route analytics aim for greater accuracy with less emphasis on overhead reduction.

Network tomography may find links which are shared by multiple paths (and can thus become potential bottlenecks in the future). [7]

Network Tomography may improve the control of a smart grid [8]

See also

Related Research Articles

In computer networking, the maximum transmission unit (MTU) is the size of the largest protocol data unit (PDU) that can be communicated in a single network layer transaction. The MTU relates to, but is not identical to the maximum frame size that can be transported on the data link layer, e.g. Ethernet frame.

Telecommunications network Network for communications over distance

A telecommunications network is a group of nodes interconnected by telecommunications links that are used to exchange messages between the nodes. The links may use a variety of technologies based on the methodologies of circuit switching, message switching, or packet switching, to pass messages and signals.

FAST TCP is a TCP congestion avoidance algorithm especially targeted at long-distance, high latency links, developed at the Netlab, California Institute of Technology and now being commercialized by FastSoft. FastSoft was acquired by Akamai Technologies in 2012.

Mesh networking Network with multiple links between nodes

A mesh network is a local area network topology in which the infrastructure nodes connect directly, dynamically and non-hierarchically to as many other nodes as possible and cooperate with one another to efficiently route data to and from clients.

Packet forwarding is the relaying of packets from one network segment to another by nodes in a computer network. The network layer in the OSI model is responsible for packet forwarding.

Interplanetary Internet Model of Internet between planets

The interplanetary Internet is a conceived computer network in space, consisting of a set of network nodes that can communicate with each other. These nodes are the planet's orbiters and landers, and the Earth ground stations. For example, the orbiters collect the scientific data from the Curiosity rover on Mars through near-Mars communication links, transmit the data to Earth through direct links from the Mars orbiters to the Earth ground stations, and finally the data routed through Earth's internal internet.

Transmission Control Protocol (TCP) uses a network congestion-avoidance algorithm that includes various aspects of an additive increase/multiplicative decrease (AIMD) scheme, along with other schemes including slow start and congestion window (CWND), to achieve congestion avoidance. The TCP congestion-avoidance algorithm is the primary basis for congestion control in the Internet. Per the end-to-end principle, congestion control is largely a function of internet hosts, not the network itself. There are several variations and versions of the algorithm implemented in protocol stacks of operating systems of computers that connect to the Internet.

The Precision Time Protocol (PTP) is a protocol used to synchronize clocks throughout a computer network. On a local area network, it achieves clock accuracy in the sub-microsecond range, making it suitable for measurement and control systems. PTP is currently employed to synchronize financial transactions, mobile phone tower transmissions, sub-sea acoustic arrays, and networks that require precise timing but lack access to satellite navigation signals.

In computer networking, a reliable protocol is a communication protocol that notifies the sender whether or not the delivery of data to intended recipients was successful. Reliability is a synonym for assurance, which is the term used by the ITU and ATM Forum.

In computer networking, linear network coding is a program in which intermediate nodes transmit data from source nodes to sink nodes by means of linear combinations.

Quality of experience (QoE) is a measure of the delight or annoyance of a customer's experiences with a service. QoE focuses on the entire service experience; it is a holistic concept, similar to the field of user experience, but with its roots in telecommunication. QoE is an emerging multidisciplinary field based on social psychology, cognitive science, economics, and engineering science, focused on understanding overall human quality requirements.

Computer network Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. The computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies, based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

WAN optimization is a collection of techniques for improving data transfer across wide area networks (WANs). In 2008, the WAN optimization market was estimated to be $1 billion, and was to grow to $4.4 billion by 2014 according to Gartner, a technology research firm. In 2015 Gartner estimated the WAN optimization market to be a $1.1 billion market.

A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers in wired networks or access points in wireless networks. Instead, each node participates in routing by forwarding data for other nodes, so the determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.

In communication networks, cognitive network (CN) is a new type of data network that makes use of cutting edge technology from several research areas to solve some problems current networks are faced with. Cognitive network is different from cognitive radio (CR) as it covers all the layers of the OSI model.

Data center bridging (DCB) is a set of enhancements to the Ethernet local area network communication protocol for use in data center environments, in particular for use with clustering and storage area networks.

Shortest Path Bridging (SPB), specified in the IEEE 802.1aq standard, is a computer networking technology intended to simplify the creation and configuration of networks, while enabling multipath routing.

Error concealment is a technique used in signal processing that aims to minimize the deterioration of signals caused by missing data, called packet loss. A signal is a message sent from a transmitter to a receiver in multiple small packets. Packet loss occurs when these packets are misdirected, delayed, resequenced, or corrupted.

PingER, an acronym for Ping End-to-end Reporting, measures round-trip travel time of a packet of data between two nodes on the Internet. The PingER' Project uses a simple tool—the ping command—to get valuable insights into performance of the Internet backbone.

RIPE Atlas is a global, open, distributed Internet measurement platform, consisting of thousands of measurement devices that measure Internet connectivity in real time.

References

  1. Vardi, Y. (1996). "Network Tomography: estimating source-destination traffic intensities from link data". Journal of the American Statistical Association. 91 (433): 365–377. doi:10.2307/2291416. JSTOR   2291416.
  2. Castro, R.; Coates, Mark; Liang, Gang; Nowak, Robert; Yu, Bin (2004). "Network Tomography: Recent Developments". Statistical Science. 19 (3): 499–517. CiteSeerX   10.1.1.64.8631 . doi:10.1214/088342304000000422.
  3. Coates, M.; Hero Iii, A.O.; Nowak, R.; Yu, Bin (2002). "Internet tomography" (PDF). IEEE Signal Processing Magazine. 19 (3): 47–65. doi:10.1109/79.998081. S2CID   61796409. Archived from the original (PDF) on 2019-12-29.
  4. Coates, M. (2000). "Network loss inference using unicast end-to-end measurement". Proc. ITC Seminar on IP Traffic, Measurement, and Modeling. 28.
  5. Duffield, N. (2001). "Inferring link loss using striped unicast probes". IEEE Infocom. 2: 915–923.
  6. Tsang, Y.; Coates, M.; Nowak, R.D. (2003). "Network Delay Tomography". IEEE Trans. Signal Process. 51 (8): 2125–2136. CiteSeerX   10.1.1.72.2541 . doi:10.1109/TSP.2003.814520.
  7. Rubenstein, D.; Kurose, J.; Towsley, D. (2002). "Detecting shared congestion of flows via end-to-end measurement" (PDF). IEEE/ACM Transactions on Networking. 10 (3): 381–395. doi:10.1109/TNET.2002.1012369.
  8. Keshav, S.; Rosenberg, C. (2010). How Internet Concepts and Technologies Can Help Green and Smarten the Electrical Grid. Green Networking '10 Proceedings of the First ACM SIGCOMM Workshop on Green Networking. pp. 35–40. doi:10.1145/1851290.1851298. ISBN   9781450301961.