Nitrophorin

Last updated

Nitrophorins are hemoproteins found in the saliva of blood-feeding insects. Saliva of the blood-sucking bug Rhodnius prolixus contains at least seven homologous nitrophorins, designated NP1 to NP7 in order of their relative abundance in the glands. As isolated, nitrophorins contain nitric oxide (NO) ligated to the ferric heme iron (Fe3+). Histamine, which is released by the host in response to tissue damage, is another nitrophorin ligand. Nitrophorins transport NO to the feeding site. Dilution, binding of histamine and increase in pH (from pH ~5 in salivary gland to pH ~7.4 in the host tissue) facilitate the release of NO into the tissue where it induces vasodilatation. [1]

The salivary nitrophorin from the hemipteran Cimex lectularius (bedbug) has no sequence similarity to Rhodnius prolixus nitrophorins but is homologous to the inositol-polyphosphate 5-phosphatase (EC 3.1.3.56). It is suggested that the two classes of insect nitrophorins have arisen as a product of the convergent evolution.

The crystal structures of several nitrophorin complexes are known. The Rhodnius prolixus nitrophorin structures reveal lipocalin-like eight-stranded β-barrel, three α-helices and two disulfide bonds, with heme inserted into one end of the barrel. Members of the lipocalin family are known to bind a variety of small hydrophobic ligands, including biliverdin, in a similar fashion. The heme iron is ligated to histidine residue (His-59). The position of His-59 is restrained through water-mediated hydrogen bond to the carboxylate of aspartic acid residue (Asp-70). The His-59Fe bond is bent ~15° out of the imidazole plane. Asp-70 forms an unusual hydrogen bond with one of the heme propionates, suggesting the residue has an altered pKa. In NP1-histamine structure, the planes of His-59 and histamine imidazole rings lie in an arrangement almost identical to that found in oxidized cytochrome b5.

The fold of nitrophorin from Cimex lectularius consists of central 11-stranded β-sandwich and seven peripheral α-helices. The heme is positioned between β-sheet and an α-helix, with heme iron ligated to cysteinate residue. NO can bind both to heme Fe3+ and to proximal Cys-60 ligand causing reversible S-nitrosylation.

Related Research Articles

<span class="mw-page-title-main">Hemoglobin</span> Metalloprotein that binds with oxygen

Hemoglobin is a protein containing iron that facilitates the transportation of oxygen in red blood cells. Almost all vertebrates contain hemoglobin, with the sole exception of the fish family Channichthyidae. Hemoglobin in the blood carries oxygen from the respiratory organs to the other tissues of the body, where it releases the oxygen to enable aerobic respiration which powers an animal's metabolism. A healthy human has 12 to 20 grams of hemoglobin in every 100 mL of blood. Hemoglobin is a metalloprotein, a chromoprotein, and globulin.

<span class="mw-page-title-main">Histidine</span> Chemical compound

Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated –NH3+ form under biological conditions), a carboxylic acid group (which is in the deprotonated –COO form under biological conditions), and an imidazole side chain (which is partially protonated), classifying it as a positively charged amino acid at physiological pH. Initially thought essential only for infants, it has now been shown in longer-term studies to be essential for adults also. It is encoded by the codons CAU and CAC.

<span class="mw-page-title-main">Hemoglobinopathy</span> Any of various genetic disorders of blood

Hemoglobinopathy is the medical term for a group of inherited blood disorders involving the hemoglobin, the protein of red blood cells. They are single-gene disorders and, in most cases, they are inherited as autosomal co-dominant traits.

<span class="mw-page-title-main">Hemoprotein</span> Protein containing a heme prosthetic group

A hemeprotein, or heme protein, is a protein that contains a heme prosthetic group. They are a very large class of metalloproteins. The heme group confers functionality, which can include oxygen carrying, oxygen reduction, electron transfer, and other processes. Heme is bound to the protein either covalently or noncovalently or both.

<span class="mw-page-title-main">Hemerythrin</span> InterPro Family

Hemerythrin (also spelled haemerythrin; Ancient Greek: αἷμα, romanized: haîma, lit. 'blood', Ancient Greek: ἐρυθρός, romanized: erythrós, lit. 'red') is an oligomeric protein responsible for oxygen (O2) transport in the marine invertebrate phyla of sipunculids, priapulids, brachiopods, and in a single annelid worm genus, Magelona. Myohemerythrin is a monomeric O2-binding protein found in the muscles of marine invertebrates. Hemerythrin and myohemerythrin are essentially colorless when deoxygenated, but turn a violet-pink in the oxygenated state.

<span class="mw-page-title-main">Succinyl coenzyme A synthetase</span> Class of enzymes

Succinyl coenzyme A synthetase is an enzyme that catalyzes the reversible reaction of succinyl-CoA to succinate. The enzyme facilitates the coupling of this reaction to the formation of a nucleoside triphosphate molecule from an inorganic phosphate molecule and a nucleoside diphosphate molecule. It plays a key role as one of the catalysts involved in the citric acid cycle, a central pathway in cellular metabolism, and it is located within the mitochondrial matrix of a cell.

<span class="mw-page-title-main">Rubredoxin</span> Class of iron-containing proteins

Rubredoxins are a class of low-molecular-weight iron-containing proteins found in sulfur-metabolizing bacteria and archaea. Sometimes rubredoxins are classified as iron-sulfur proteins; however, in contrast to iron-sulfur proteins, rubredoxins do not contain inorganic sulfide. Like cytochromes, ferredoxins and Rieske proteins, rubredoxins are thought to participate in electron transfer in biological systems. Recent work in bacteria and algae have led to the hypothesis that some rubredoxins may instead have a role in delivering iron to metalloproteins.

Cytochrome b<sub>5</sub>

Cytochromes b5 are ubiquitous electron transport hemoproteins found in animals, plants, fungi and purple phototrophic bacteria. The microsomal and mitochondrial variants are membrane-bound, while bacterial and those from erythrocytes and other animal tissues are water-soluble. The family of cytochrome b5-like proteins includes hemoprotein domains covalently associated with other redox domains in flavocytochrome cytochrome b2, sulfite oxidase, plant and fungal nitrate reductases, and plant and fungal cytochrome b5/acyl lipid desaturase fusion proteins.

<span class="mw-page-title-main">Catechol 1,2-dioxygenase</span> Enzyme

Catechol 1,2- dioxygenase is an enzyme that catalyzes the oxidative ring cleavage of catechol to form cis,cis-muconic acid:

<span class="mw-page-title-main">Liver X receptor</span> Nuclear receptor

The liver X receptor (LXR) is a member of the nuclear receptor family of transcription factors and is closely related to nuclear receptors such as the PPARs, FXR and RXR. Liver X receptors (LXRs) are important regulators of cholesterol, fatty acid, and glucose homeostasis. LXRs were earlier classified as orphan nuclear receptors, however, upon discovery of endogenous oxysterols as ligands they were subsequently deorphanized.

<span class="mw-page-title-main">Soluble guanylyl cyclase</span>

Soluble guanylyl cyclase (sGC) is one of the gasoreceptors for nitric oxide, NO. It is soluble, i.e. completely intracellular. Most notably, this enzyme is involved in vasodilation. In humans, it is encoded by the genes GUCY1A2, GUCY1A3, GUCY1B2 and GUCY1B3.

Nitrile hydratases are mononuclear iron or non-corrinoid cobalt enzymes that catalyse the hydration of diverse nitriles to their corresponding amides:

<span class="mw-page-title-main">Cystathionine beta synthase</span> Mammalian protein found in humans

Cystathionine-β-synthase, also known as CBS, is an enzyme (EC 4.2.1.22) that in humans is encoded by the CBS gene. It catalyzes the first step of the transsulfuration pathway, from homocysteine to cystathionine:

<span class="mw-page-title-main">Formate dehydrogenase</span>

Formate dehydrogenases are a set of enzymes that catalyse the oxidation of formate to carbon dioxide, donating the electrons to a second substrate, such as NAD+ in formate:NAD+ oxidoreductase (EC 1.17.1.9) or to a cytochrome in formate:ferricytochrome-b1 oxidoreductase (EC 1.2.2.1). This family of enzymes has attracted attention as inspiration or guidance on methods for the carbon dioxide fixation, relevant to global warming.

Nitric oxide reductase, an enzyme, catalyzes the reduction of nitric oxide (NO) to nitrous oxide (N2O). The enzyme participates in nitrogen metabolism and in the microbial defense against nitric oxide toxicity. The catalyzed reaction may be dependent on different participating small molecules: Cytochrome c (EC: 1.7.2.5, Nitric oxide reductase (cytochrome c)), NADPH (EC:1.7.1.14), or Menaquinone (EC:1.7.5.2).

<span class="mw-page-title-main">Thiosulfate dehydrogenase</span>

Thiosulfate dehydrogenase is an enzyme that catalyzes the chemical reaction:

<span class="mw-page-title-main">Dioxygenase</span> Class of enzymes

Dioxygenases are oxidoreductase enzymes. Aerobic life, from simple single-celled bacteria species to complex eukaryotic organisms, has evolved to depend on the oxidizing power of dioxygen in various metabolic pathways. From energetic adenosine triphosphate (ATP) generation to xenobiotic degradation, the use of dioxygen as a biological oxidant is widespread and varied in the exact mechanism of its use. Enzymes employ many different schemes to use dioxygen, and this largely depends on the substrate and reaction at hand.

<span class="mw-page-title-main">Hemozoin</span>

Haemozoin is a disposal product formed from the digestion of blood by some blood-feeding parasites. These hematophagous organisms such as malaria parasites, Rhodnius and Schistosoma digest haemoglobin and release high quantities of free heme, which is the non-protein component of haemoglobin. Heme is a prosthetic group consisting of an iron atom contained in the center of a heterocyclic porphyrin ring. Free heme is toxic to cells, so the parasites convert it into an insoluble crystalline form called hemozoin. In malaria parasites, hemozoin is often called malaria pigment.

CooA is a heme-containing transcription factor that responds to the presence of carbon monoxide. This protein forms homodimers and is a homolog of cAMP receptor protein. CooA regulates the expression of carbon monoxide dehydrogenase, an enzyme that catalyzes the oxidation of CO to CO2. The most well-studied CooA homolog comes from Rhodospirillum rubrum (RrCooA), but the CooA homolog from Carboxydothermus hydrogenoformans (ChCooA) has been studied as well. The main difference between these two CooA homologs is the ferric heme coordination. For RrCooA, the ferric heme iron is bound to a cysteine and the amine of the N-terminal proline, while, in the ferrous state, a ligand switch occurs where a nearby histidine displaces the thiolate. For ChCooA, the heme iron is ligated by a histidine and the N-terminal amine in both the ferric and ferrous states. For both homologs, CO displaces the amine ligand and activates the protein to bind to its target DNA sequence. Several structures of CooA exist: RrCooA in the ferrous state (1FT9), ChCooA in the ferrous, imidazole-bound state (2FMY), and ChCooA in the ferrous, CO-bound state (2HKX).

Frances Ann Walker was an American chemist known for her work on heme protein chemistry. She was an elected fellow of the American Association for the Advancement of Science and the American Chemical Society.

References

  1. Walker, F. A. (2005). "Nitric Oxide Interaction with Insect Nitrophorins and Thoughts on the Electron Configuration of the FeNO6 complex". J. Inorg. Biochem. 99 (1): 216–236. doi:10.1016/j.jinorgbio.2004.10.009. PMID   15598503.