Node2vec

Last updated

node2vec is an algorithm to generate vector representations of nodes on a graph. The node2vec framework learns low-dimensional representations for nodes in a graph through the use of random walks through a graph starting at a target node. It is useful for a variety of machine learning applications. node2vec follows the intuition that random walks through a graph can be treated like sentences in a corpus. Each node in a graph is treated like an individual word, and a random walk is treated as a sentence. By feeding these "sentences" into a skip-gram, or by using the continuous bag of words model paths found by random walks can be treated as sentences, and traditional data-mining techniques for documents can be used. The algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and argues that the added flexibility in exploring neighborhoods is the key to learning richer representations of nodes in graphs. [1] The algorithm is considered one of the best graph classifiers. [2]

See also

Related Research Articles

A Bayesian network is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). While it is one of several forms of causal notation, causal networks are special cases of Bayesian networks. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

<span class="mw-page-title-main">Nonlinear dimensionality reduction</span> Summary of algorithms for nonlinear dimensionality reduction

Nonlinear dimensionality reduction, also known as manifold learning, refers to various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.

Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content as opposed to lexicographical similarity. These are mathematical tools used to estimate the strength of the semantic relationship between units of language, concepts or instances, through a numerical description obtained according to the comparison of information supporting their meaning or describing their nature. The term semantic similarity is often confused with semantic relatedness. Semantic relatedness includes any relation between two terms, while semantic similarity only includes "is a" relations. For example, "car" is similar to "bus", but is also related to "road" and "driving".

Medoids are representative objects of a data set or a cluster within a data set whose sum of dissimilarities to all the objects in the cluster is minimal. Medoids are similar in concept to means or centroids, but medoids are always restricted to be members of the data set. Medoids are most commonly used on data when a mean or centroid cannot be defined, such as graphs. They are also used in contexts where the centroid is not representative of the dataset like in images, 3-D trajectories and gene expression. These are also of interest while wanting to find a representative using some distance other than squared euclidean distance.

Dynamic network analysis (DNA) is an emergent scientific field that brings together traditional social network analysis (SNA), link analysis (LA), social simulation and multi-agent systems (MAS) within network science and network theory. Dynamic networks are a function of time to a set of graphs; for each time point there is a graph. This is akin to the definition of dynamical systems, in which the function is from time to an ambient space, where instead of ambient space time is translated to relationships between pairs of vertices.

<span class="mw-page-title-main">Community structure</span> Concept in graph theory

In the study of complex networks, a network is said to have community structure if the nodes of the network can be easily grouped into sets of nodes such that each set of nodes is densely connected internally. In the particular case of non-overlapping community finding, this implies that the network divides naturally into groups of nodes with dense connections internally and sparser connections between groups. But overlapping communities are also allowed. The more general definition is based on the principle that pairs of nodes are more likely to be connected if they are both members of the same community(ies), and less likely to be connected if they do not share communities. A related but different problem is community search, where the goal is to find a community that a certain vertex belongs to.

Hierarchical temporal memory (HTM) is a biologically constrained machine intelligence technology developed by Numenta. Originally described in the 2004 book On Intelligence by Jeff Hawkins with Sandra Blakeslee, HTM is primarily used today for anomaly detection in streaming data. The technology is based on neuroscience and the physiology and interaction of pyramidal neurons in the neocortex of the mammalian brain.

<span class="mw-page-title-main">Feature learning</span> Set of learning techniques in machine learning

In machine learning, feature learning or representation learning is a set of techniques that allows a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task.

<span class="mw-page-title-main">Entity linking</span> Concept in Natural Language Processing

In natural language processing, entity linking, also referred to as named-entity linking (NEL), named-entity disambiguation (NED), named-entity recognition and disambiguation (NERD) or named-entity normalization (NEN) is the task of assigning a unique identity to entities mentioned in text. For example, given the sentence "Paris is the capital of France", the idea is to determine that "Paris" refers to the city of Paris and not to Paris Hilton or any other entity that could be referred to as "Paris". Entity linking is different from named-entity recognition (NER) in that NER identifies the occurrence of a named entity in text but it does not identify which specific entity it is.

In structure mining, a graph kernel is a kernel function that computes an inner product on graphs. Graph kernels can be intuitively understood as functions measuring the similarity of pairs of graphs. They allow kernelized learning algorithms such as support vector machines to work directly on graphs, without having to do feature extraction to transform them to fixed-length, real-valued feature vectors. They find applications in bioinformatics, in chemoinformatics, and in social network analysis.

In natural language processing (NLP), a text graph is a graph representation of a text item. It is typically created as a preprocessing step to support NLP tasks such as text condensation term disambiguation (topic-based) text summarization, relation extraction and textual entailment.

<span class="mw-page-title-main">Hyperbolic geometric graph</span>

A hyperbolic geometric graph (HGG) or hyperbolic geometric network (HGN) is a special type of spatial network where (1) latent coordinates of nodes are sprinkled according to a probability density function into a hyperbolic space of constant negative curvature and (2) an edge between two nodes is present if they are close according to a function of the metric (typically either a Heaviside step function resulting in deterministic connections between vertices closer than a certain threshold distance, or a decaying function of hyperbolic distance yielding the connection probability). A HGG generalizes a random geometric graph (RGG) whose embedding space is Euclidean.

<span class="mw-page-title-main">Biased random walk on a graph</span> Structural analysis of a network

In network science, a biased random walk on a graph is a time path process in which an evolving variable jumps from its current state to one of various potential new states; unlike in a pure random walk, the probabilities of the potential new states are unequal.

<span class="mw-page-title-main">Author name disambiguation</span>

Author name disambiguation is a type of disambiguation and record linkage applied to the names of individual people. The process could, for example, distinguish individuals with the name "John Smith".

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

<span class="mw-page-title-main">Knowledge graph</span> Type of knowledge base

In knowledge representation and reasoning, a knowledge graph is a knowledge base that uses a graph-structured data model or topology to represent and operate on data. Knowledge graphs are often used to store interlinked descriptions of entities – objects, events, situations or abstract concepts – while also encoding the semantics or relationships underlying these entities.

In network theory, link prediction is the problem of predicting the existence of a link between two entities in a network. Examples of link prediction include predicting friendship links among users in a social network, predicting co-authorship links in a citation network, and predicting interactions between genes and proteins in a biological network. Link prediction can also have a temporal aspect, where, given a snapshot of the set of links at time , the goal is to predict the links at time . Link prediction is widely applicable. In e-commerce, link prediction is often a subtask for recommending items to users. In the curation of citation databases, it can be used for record deduplication. In bioinformatics, it has been used to predict protein-protein interactions (PPI). It is also used to identify hidden groups of terrorists and criminals in security related applications.

In network theory, collective classification is the simultaneous prediction of the labels for multiple objects, where each label is predicted using information about the object's observed features, the observed features and labels of its neighbors, and the unobserved labels of its neighbors. Collective classification problems are defined in terms of networks of random variables, where the network structure determines the relationship between the random variables. Inference is performed on multiple random variables simultaneously, typically by propagating information between nodes in the network to perform approximate inference. Approaches that use collective classification can make use of relational information when performing inference. Examples of collective classification include predicting attributes of individuals in a social network, classifying webpages in the World Wide Web, and inferring the research area of a paper in a scientific publication dataset.

struc2vec is a framework to generate node vector representations on a graph that preserve the structural identity. In contrast to node2vec, that optimizes node embeddings so that nearby nodes in the graph have similar embedding, struc2vec captures the roles of nodes in a graph, even if structurally similar nodes are far apart in the graph. It learns low-dimensional representations for nodes in a graph, generating random walks through a constructed multi-layer graph starting at each graph node. It is useful for machine learning applications where the downstream application is more related with the structural equivalence of the nodes. struc2vec identifies nodes that play a similar role based solely on the structure of the graph, for example computing the structural identity of individuals in social networks. In particular, struc2vec employs a degree-based method to measure the pairwise structural role similarity, which is then adopted to build the multi-layer graph. Moreover, the distance between the latent representation of nodes is strongly correlated to their structural similarity. The framework contains three optimizations: reducing the length of degree sequences considered, reducing the number of pairwise similarity calculations, and reducing the number of layers in the generated graph.

A graph neural network (GNN) belongs to a class of artificial neural networks for processing data that can be represented as graphs.

References

  1. Grover, Aditya; Leskovec, Jure (2016). "Node2vec". Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Vol. 2016. pp. 855–864. arXiv: 1607.00653 . Bibcode:2016arXiv160700653G. doi:10.1145/2939672.2939754. ISBN   9781450342322. PMC   5108654 . PMID   27853626.
  2. Khosla, Megha; Setty, Vinay; Anand, Avishek (2020). "A Comparative Study for Unsupervised Network Representation Learning". IEEE Transactions on Knowledge and Data Engineering: 1. arXiv: 1903.07902 . doi:10.1109/tkde.2019.2951398. S2CID   207870054.