Noise curves are a common way to characterise background noise in unoccupied buildings and spaces. [1] Their purpose is to produce a single-value representation of a complete sound spectrum. International standards organizations (ISO, [2] ANSI [3] and ASA) recognize the need to objectify judgements on the amount of ambient noise in enclosed spaces, and provide us with definitions for various noise curves. [4] The ANSI/ASA S12.2-2008 standard, for example, recommends an NC value of 25-35 for schools and 15-18 for concert halls. [5]
Background noise may have several undesirable effects. Noise can be an annoyance that creates fatigue and negatively affects productivity, safety and the ability to communicate. Therefore, standard methodologies for quantifying noise have been developed. Noise curves reflect different standardized means of creating a single number rating for the background noise spectrum in a space. Different rooms, locations, regulations, and applications may allow different acceptable noise ratings. In most cases, the goal is that background noise should not interfere with the purpose of the room, e.g. the noise of an office air-conditioning system and consistent noise of traffic outside the building should not interfere with telephone calls or conversations. In other cases, special noise may also be tolerated or even introduced at higher levels, for example to create acoustic "privacy", or to help mask other more irritating noise sources.
The process of determining the single value for a particular room is first to measure the sound frequency spectrum created by the background noise in the room while the room is unoccupied. This spectrum is then superimposed onto a template graph containing the noise curves. The result is determined by the lowest curve which is not touched by the measured spectrum at any position in the audio frequency range.
Noise curves serve as uniform measuring standards and are referred to by many noise regulations covering a variety of locations from concert halls, rock concerts, lecture rooms and offices to clay target shooting ranges. There are five major methods and standards for noise curves: [4]
The American National Standards Institute is a private non-profit organization that oversees the development of voluntary consensus standards for products, services, processes, systems, and personnel in the United States. The organization also coordinates U.S. standards with international standards so that American products can be used worldwide.
In telecommunication and radio communication, spread-spectrum techniques are methods by which a signal generated with a particular bandwidth is deliberately spread in the frequency domain, resulting in a signal with a wider bandwidth. These techniques are used for a variety of reasons, including the establishment of secure communications, increasing resistance to natural interference, noise, and jamming, to prevent detection, to limit power flux density, and to enable multiple-access communications.
In music, timbre, also known as tone color or tone quality, is the perceived sound quality of a musical note, sound or tone. Timbre distinguishes different types of sound production, such as choir voices and musical instruments. It also enables listeners to distinguish different instruments in the same category.
Film speed is the measure of a photographic film's sensitivity to light, determined by sensitometry and measured on various numerical scales, the most recent being the ISO system. A closely related ISO system is used to describe the relationship between exposure and output image lightness in digital cameras.
Reverberation, in acoustics, is a persistence of sound, after a sound is produced. Reverberation is created when a sound or signal is reflected causing numerous reflections to build up and then decay as the sound is absorbed by the surfaces of objects in the space – which could include furniture, people, and air. This is most noticeable when the sound source stops but the reflections continue, their amplitude decreasing, until zero is reached.
Room acoustics is a subfield of acoustics dealing with the behaviour of sound in enclosed or partially-enclosed spaces. The architectural details of a room influences the behaviour of sound waves within it, with the effects varying by frequency. Acoustic reflection, diffraction, and diffusion can combine to create audible phenomena such as room modes and standing waves at specific frequencies and locations, echos, and unique reverberation patterns.
NC may refer to:
In acoustics, loudness is the subjective perception of sound pressure. More formally, it is defined as, "That attribute of auditory sensation in terms of which sounds can be ordered on a scale extending from quiet to loud". The relation of physical attributes of sound to perceived loudness consists of physical, physiological and psychological components. The study of apparent loudness is included in the topic of psychoacoustics and employs methods of psychophysics.
A hearing test provides an evaluation of the sensitivity of a person's sense of hearing and is most often performed by an audiologist using an audiometer. An audiometer is used to determine a person's hearing sensitivity at different frequencies. There are other hearing tests as well, e.g., Weber test and Rinne test.
An earplug is a device that is inserted in the ear canal to protect the user's ears from loud noises, intrusion of water, foreign bodies, dust or excessive wind. Since they reduce the sound volume, earplugs are often used to help prevent hearing loss and tinnitus.
An equal-loudness contour is a measure of sound pressure level, over the frequency spectrum, for which a listener perceives a constant loudness when presented with pure steady tones. The unit of measurement for loudness levels is the phon and is arrived at by reference to equal-loudness contours. By definition, two sine waves of differing frequencies are said to have equal-loudness level measured in phons if they are perceived as equally loud by the average young person without significant hearing impairment.
Sound Transmission Class is an integer rating of how well a building partition attenuates airborne sound. In the US, it is widely used to rate interior partitions, ceilings, floors, doors, windows and exterior wall configurations. Outside the US, the ISO Sound Reduction Index (SRI) is used. The STC rating very roughly reflects the decibel reduction of noise that a partition can provide. The STC is useful for evaluating annoyance due to speech sounds, but not music or machinery noise as these sources contain more low frequency energy than speech.
Speech Transmission Index (STI) is a measure of speech transmission quality. The absolute measurement of speech intelligibility is a complex science. The STI measures some physical characteristics of a transmission channel, and expresses the ability of the channel to carry across the characteristics of a speech signal. STI is a well-established objective measurement predictor of how the characteristics of the transmission channel affect speech intelligibility.
ITU-R 468 is a standard relating to noise measurement, widely used when measuring noise in audio systems. The standard, now referred to as ITU-R BS.468-4, defines a weighting filter curve, together with a quasi-peak rectifier having special characteristics as defined by specified tone-burst tests. It is currently maintained by the International Telecommunication Union who took it over from the CCIR.
A sound level meter is used for acoustic measurements. It is commonly a hand-held instrument with a microphone. The best type of microphone for sound level meters is the condenser microphone, which combines precision with stability and reliability. The diaphragm of the microphone responds to changes in air pressure caused by sound waves. That is why the instrument is sometimes referred to as a sound pressure level meter (SPL). This movement of the diaphragm, i.e. the sound pressure, is converted into an electrical signal. While describing sound in terms of sound pressure, a logarithmic conversion is usually applied and the sound pressure level is stated instead, in decibels (dB), with 0 dB SPL equal to 20 micropascals.
Sound masking is the inclusion of generated sound into an environment to mask unwanted sound. It relies on auditory masking. Sound masking is not a form of active noise control ; however, it can reduce or eliminate the perception of sound. Sound masking is applied to an entire area to improve acoustical satisfaction, thus improving the acoustical privacy of the space. This can help an individual focus and thereby enhance productivity.
The sound reduction index is used to measure the level of sound insulation provided by a structure such as a wall, window, door, or ventilator. It is defined in the series of international standards ISO 16283 and the older ISO 140, or the regional or national variants on these standards. In the United States, the sound transmission class rating is generally used instead. The basic method for both the actual measurements and the mathematical calculations behind both standards is similar, however they diverge to a significant degree in the detail, and in the numerical results produced.
A-weighting is the most commonly used of a family of curves defined in the International standard IEC 61672:2003 and various national standards relating to the measurement of sound pressure level. A-weighting is applied to instrument-measured sound levels in an effort to account for the relative loudness perceived by the human ear, as the ear is less sensitive to low audio frequencies. It is employed by arithmetically adding a table of values, listed by octave or third-octave bands, to the measured sound pressure levels in dB. The resulting octave band measurements are usually added to provide a single A-weighted value describing the sound; the units are written as dB(A). Other weighting sets of values – B, C, D and now Z – are discussed below.
Minimum audibility curve is a standardized graph of the threshold of hearing frequency for an average human, and is used as the reference level when measuring hearing loss with an audiometer as shown on an audiogram.
In science and engineering, a power level and a field level are logarithmic measures of certain quantities referenced to a standard reference value of the same type.