Non-communications signals

Last updated

In signals intelligence (SIGINT), non-communications signals are any signals sent out for a purpose other than communicating information. This includes radar emissions and emissions from instrumentation (which provide information, but are not sent out for the purpose of providing information to others). [1] [2] [3]

Electronic signals intelligence (ELINT), which came to be studied in great detail after World War II, attempts to detect and analyze enemy non-communications signals. [3] [4] Foreign instrumentation signals intelligence (FISINT) focuses specifically on non-communications signals emitted by instrumentation, including telemetry signals sent between components of a system. [5]

Related Research Articles

<span class="mw-page-title-main">GCHQ</span> British signals intelligence agency

Government Communications Headquarters (GCHQ) is an intelligence and security organisation responsible for providing signals intelligence (SIGINT) and information assurance (IA) to the government and armed forces of the United Kingdom. Primarily based at "The Doughnut" in the suburbs of Cheltenham, GCHQ is the responsibility of the country's Secretary of State for Foreign and Commonwealth Affairs, but it is not a part of the Foreign Office and its Director ranks as a Permanent Secretary.

<span class="mw-page-title-main">Positron emission tomography</span> Medical imaging technique

Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, regional chemical composition, and absorption. Different tracers are used for various imaging purposes, depending on the target process within the body.

<span class="mw-page-title-main">Signals intelligence</span> Intelligence-gathering by interception of signals

Signals intelligence (SIGINT) is intelligence-gathering by interception of signals, whether communications between people or from electronic signals not directly used in communication. Signals intelligence is a subset of intelligence collection management. As classified and sensitive information is usually encrypted, signals intelligence in turn involves the use of cryptanalysis to decipher the messages. Traffic analysis—the study of who is signaling whom and in what quantity—is also used to integrate information again.

<span class="mw-page-title-main">Electromagnetic compatibility</span> Electrical engineering concept

Electromagnetic compatibility (EMC) is the ability of electrical equipment and systems to function acceptably in their electromagnetic environment, by limiting the unintentional generation, propagation and reception of electromagnetic energy which may cause unwanted effects such as electromagnetic interference (EMI) or even physical damage to operational equipment. The goal of EMC is the correct operation of different equipment in a common electromagnetic environment. It is also the name given to the associated branch of electrical engineering.

Foreign instrumentation signals intelligence, FISINT (Foreign Instrumentation Signature INTelligence) is intelligence from the interception of foreign electromagnetic emissions associated with the testing and operational deployment of foreign aerospace, surface, and subsurface systems. Since it deals with signals that have communicational content, it is a subset of Communications Intelligence (COMINT), which, in turn, is a subset of SIGINT. Unlike general COMINT signals, the content of FISINT signals is not in regular human language, but rather in machine to machine (instrumentation) language or in a combination of regular human language and instrumentation language. FISINT is also considered as a subset of MASINT (measurement and signature intelligence).

<span class="mw-page-title-main">Electromagnetic warfare</span> Combat involving electronics and directed energy

Electromagnetic warfare or electronic warfare (EW) is warfare involving the use of the electromagnetic spectrum or directed energy to control the spectrum, attack an enemy, or impede enemy operations. The purpose of electromagnetic warfare is to deny the opponent the advantage of—and ensure friendly unimpeded access to—the EM spectrum. Electromagnetic warfare can be applied from air, sea, land, or space by crewed and uncrewed systems, and can target communication, radar, or other military and civilian assets.

<span class="mw-page-title-main">Radio broadcasting</span> Transmission by radio waves intended to reach a wide audience

Radio broadcasting is the broadcasting of audio (sound), sometimes with related metadata, by radio waves to radio receivers belonging to a public audience. In terrestrial radio broadcasting the radio waves are broadcast by a land-based radio station, while in satellite radio the radio waves are broadcast by a satellite in Earth orbit. To receive the content the listener must have a broadcast radio receiver (radio). Stations are often affiliated with a radio network that provides content in a common radio format, either in broadcast syndication or simulcast, or both. Radio stations broadcast with several different types of modulation: AM radio stations transmit in AM, FM radio stations transmit in FM, which are older analog audio standards, while newer digital radio stations transmit in several digital audio standards: DAB, HD radio, DRM. Television broadcasting is a separate service that also uses radio frequencies to broadcast television (video) signals.

<span class="mw-page-title-main">Tempest (codename)</span> Espionage using electromagnetic leakage

TEMPEST is a U.S. National Security Agency specification and a NATO certification referring to spying on information systems through leaking emanations, including unintentional radio or electrical signals, sounds, and vibrations. TEMPEST covers both methods to spy upon others and how to shield equipment against such spying. The protection efforts are also known as emission security (EMSEC), which is a subset of communications security (COMSEC).

<span class="mw-page-title-main">Photonics</span> Technical applications of optics

Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Photonics is closely related to quantum electronics, where quantum electronics deals with the theoretical part of it while photonics deal with its engineering applications. Though covering all light's technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light. The term photonics developed as an outgrowth of the first practical semiconductor light emitters invented in the early 1960s and optical fibers developed in the 1970s.

A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, typically a sine wave, that for mathematical analysis is considered to be of infinite duration. It may refer to e.g. a laser or particle accelerator having a continuous output, as opposed to a pulsed output.

<span class="mw-page-title-main">JJY</span> Japanese time signal radio station

JJY is the call sign of a low frequency time signal radio station located in Japan.

Measurement and signature intelligence (MASINT) is a technical branch of intelligence gathering, which serves to detect, track, identify or describe the distinctive characteristics (signatures) of fixed or dynamic target sources. This often includes radar intelligence, acoustic intelligence, nuclear intelligence, and chemical and biological intelligence. MASINT is defined as scientific and technical intelligence derived from the analysis of data obtained from sensing instruments for the purpose of identifying any distinctive features associated with the source, emitter or sender, to facilitate the latter's measurement and identification.

Van Eck phreaking, also known as Van Eck radiation, is a form of eavesdropping in which special equipment is used to pick up side-band electromagnetic emissions from electronic devices that correlate to hidden signals or data to recreate these signals or data to spy on the electronic device. Side-band electromagnetic radiation emissions are present in keyboards, computer displays, printers, and other electronic devices.

Plate readers, also known as microplate readers or microplate photometers, are instruments which are used to detect biological, chemical or physical events of samples in microtiter plates. They are widely used in research, drug discovery, bioassay validation, quality control and manufacturing processes in the pharmaceutical and biotechnological industry and academic organizations. Sample reactions can be assayed in 1-1536 well format microtiter plates. The most common microplate format used in academic research laboratories or clinical diagnostic laboratories is 96-well with a typical reaction volume between 100 and 200 µL per well. Higher density microplates are typically used for screening applications, when throughput and assay cost per sample become critical parameters, with a typical assay volume between 5 and 50 µL per well. Common detection modes for microplate assays are absorbance, fluorescence intensity, luminescence, time-resolved fluorescence, and fluorescence polarization.

<span class="mw-page-title-main">Electromagnetic interference</span> Disturbance in an electrical circuit due to external sources of radio waves

Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction. The disturbance may degrade the performance of the circuit or even stop it from functioning. In the case of a data path, these effects can range from an increase in error rate to a total loss of the data. Both human-made and natural sources generate changing electrical currents and voltages that can cause EMI: ignition systems, cellular network of mobile phones, lightning, solar flares, and auroras. EMI frequently affects AM radios. It can also affect mobile phones, FM radios, and televisions, as well as observations for radio astronomy and atmospheric science.

<span class="mw-page-title-main">On-board diagnostics</span> Automotive engineering terminology

On-board diagnostics (OBD) is a term referring to a vehicle's self-diagnostic and reporting capability. In the United States, this self-diagnostic is a requirement to comply with Federal Emissions standards to detect failures that may increase the vehicle tailpipe emissions to more than 150% of the standard to which it was originally certified.

Subsidiary Communications Authorization (SCA) in the United States, and Subsidiary Communications Multiplex Operation (SCMO) in Canada, is a subcarrier on a radio station, allowing the station to broadcast additional services as part of its signal.

<span class="mw-page-title-main">Fiber-optic communication</span> Method of transmitting information

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of infrared or visible light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.

<span class="mw-page-title-main">Telecommunications</span> Transmission of information electromagnetically

Telecommunication, often used in its plural form, is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than that feasible with the human voice, but with a similar scale of expediency; thus, slow systems are excluded from the field.

<span class="mw-page-title-main">Semaphore</span> Mechanical apparatus used to send messages

Semaphore is the use of an apparatus to create a visual signal transmitted over distance. A semaphore can be performed with devices including: fire, lights, flags, sunlight, and moving arms. Semaphores can be used for telegraphy when arranged in visually connected networks, or for traffic signalling such as in railway systems, or traffic lights in cities.

References

  1. Obi-Nwosu, Harry (April 15, 2014). "MILITARY COMMUNICATIONS AND INTELLIGENCE". Practicum Psychologia. 4 (1) via www.journals.aphriapub.com.
  2. Marks, J. R.; Selvidge, K. L., Using OPNET for Modeling of Non-Communications Emitters in an Air Defense Environment, Pennsylvania State University College of Information Sciences and Technology, CiteSeerX   10.1.1.18.8065
  3. 1 2 Johnson, Loch K. (January 24, 2007). Handbook of Intelligence Studies. Routledge. ISBN   9781135986889 via Google Books.
  4. Howe, George (1974). "The Early History of NSA" (PDF) via nsarchive2.gwu.edu.
  5. Mezzanotte, Diane (April 1, 2000). "Infocentricity and Beyond: How the Intelligence Community Can Survive the Challenges of Emerging Technologies, Shrinking Budgets, and Growing Suspicions". Archived from the original on April 15, 2021 via apps.dtic.mil.