Non-constructive algorithm existence proofs

Last updated

The vast majority of positive results about computational problems are constructive proofs, i.e., a computational problem is proved to be solvable by showing an algorithm that solves it; a computational problem is shown to be in P by showing an algorithm that solves it in time that is polynomial in the size of the input; etc.

Contents

However, there are several non-constructive results, where an algorithm is proved to exist without showing the algorithm itself. Several techniques are used to provide such existence proofs.

Using an unknown finite set

In combinatorial game theory

A simple example of a non-constructive algorithm was published in 1982 by Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy, in their book Winning Ways for Your Mathematical Plays . It concerns the game of Sylver Coinage, in which players take turns specifying a positive integer that cannot be expressed as a sum of previously specified values, with a player losing when they are forced to specify the number 1. There exists an algorithm (given in the book as a flow chart) for determining whether a given first move is winning or losing: if it is a prime number greater than three, or one of a finite set of 3-smooth numbers, then it is a winning first move, and otherwise it is losing. However, the finite set is not known.

In graph theory

Non-constructive algorithm proofs for problems in graph theory were studied beginning in 1988 by Michael Fellows and Michael Langston. [1]

A common question in graph theory is whether a certain input graph has a certain property. For example:

Input: a graph G.
Question: Can G be embedded in a 3-dimensional space, such that no two disjoint cycles of G are topologically linked (as in links of a chain)?

There is a highly exponential algorithm that decides whether two cycles embedded in a 3d-space are linked, and one could test all pairs of cycles in the graph, but it is not obvious how to account for all possible embeddings in a 3d-space. Thus, it is a-priori not clear at all if the linkedness problem is decidable.

However, there is a non-constructive proof that shows that linkedness is decidable in polynomial time. The proof relies on the following facts:

Given an input graph G, the following "algorithm" solves the above problem:

For every minor-minimal element H:
If H is a minor of G then return "yes".
return "no".

The non-constructive part here is the Robertson–Seymour theorem. Although it guarantees that there is a finite number of minor-minimal elements it does not tell us what these elements are. Therefore, we cannot really execute the "algorithm" mentioned above. But, we do know that an algorithm exists and that its runtime is polynomial.

There are many more similar problems whose decidability can be proved in a similar way. In some cases, the knowledge that a problem can be proved in a polynomial time has led researchers to search and find an actual polynomial-time algorithm that solves the problem in an entirely different way. This shows that non-constructive proofs can have constructive outcomes. [1]

The main idea is that a problem can be solved using an algorithm that uses, as a parameter, an unknown set. Although the set is unknown, we know that it must be finite, and thus a polynomial-time algorithm exists.

There are many other combinatorial problems that can be solved with a similar technique. [2]

Counting the algorithms

Sometimes the number of potential algorithms for a given problem is finite. We can count the number of possible algorithms and prove that only a bounded number of them are "bad", so at least one algorithm must be "good".

As an example, consider the following problem. [3]

I select a vector v composed of n elements which are integers between 0 and a certain constant d.

You have to guess v by asking sum queries, which are queries of the form: "what is the sum of the elements with indices i and j?". A sum query can relate to any number of indices from 1 to n.

How many queries do you need? Obviously, n queries are always sufficient, because you can use n queries asking for the "sum" of a single element. But when d is sufficiently small, it is possible to do better. The general idea is as follows.

Every query can be represented as a 1-by-n vector whose elements are all in the set {0,1}. The response to the query is just the dot product of the query vector by v. Every set of k queries can be represented by a k-by-n matrix over {0,1}; the set of responses is the product of the matrix by v.

A matrix M is "good" if it enables us to uniquely identify v. This means that, for every vector v, the product M v is unique. A matrix M is "bad" if there are two different vectors, v and u, such that M v = M u.

Using some algebra, it is possible to bound the number of "bad" matrices. The bound is a function of d and k. Thus, for a sufficiently small d, there must be a "good" matrix with a small k, which corresponds to an efficient algorithm for solving the identification problem.

This proof is non-constructive in two ways: it is not known how to find a good matrix; and even if a good matrix is supplied, it is not known how to efficiently re-construct the vector from the query replies.

There are many more similar problems which can be proved to be solvable in a similar way. [3]

Additional examples

Related Research Articles

The P versus NP problem is a major unsolved problem in theoretical computer science. Informally, it asks whether every problem whose solution can be quickly verified can also be quickly solved.

<span class="mw-page-title-main">NP (complexity)</span> Complexity class used to classify decision problems

In computational complexity theory, NP is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.

In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation, can decide whether the equation has a solution with all unknowns taking integer values.

In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice.

In graph theory, the Robertson–Seymour theorem states that the undirected graphs, partially ordered by the graph minor relationship, form a well-quasi-ordering. Equivalently, every family of graphs that is closed under minors can be defined by a finite set of forbidden minors, in the same way that Wagner's theorem characterizes the planar graphs as being the graphs that do not have the complete graph K5 or the complete bipartite graph K3,3 as minors.

In graph theory, an undirected graph H is called a minor of the graph G if H can be formed from G by deleting edges, vertices and by contracting edges.

In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof, which proves the existence of a particular kind of object without providing an example. For avoiding confusion with the stronger concept that follows, such a constructive proof is sometimes called an effective proof.

<span class="mw-page-title-main">Graph coloring</span> Methodic assignment of colors to elements of a graph

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.

In quantum computing, a quantum algorithm is an algorithm that runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical computer. Similarly, a quantum algorithm is a step-by-step procedure, where each of the steps can be performed on a quantum computer. Although all classical algorithms can also be performed on a quantum computer, the term quantum algorithm is generally reserved for algorithms that seem inherently quantum, or use some essential feature of quantum computation such as quantum superposition or quantum entanglement.

In computational complexity theory, P, also known as PTIME or DTIME(nO(1)), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time.

<span class="mw-page-title-main">Perfect graph</span> Graph with tight clique-coloring relation

In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices.

In topological graph theory, a mathematical discipline, a linkless embedding of an undirected graph is an embedding of the graph into three-dimensional Euclidean space in such a way that no two cycles of the graph are linked. A flat embedding is an embedding with the property that every cycle is the boundary of a topological disk whose interior is disjoint from the graph. A linklessly embeddable graph is a graph that has a linkless or flat embedding; these graphs form a three-dimensional analogue of the planar graphs. Complementarily, an intrinsically linked graph is a graph that does not have a linkless embedding.

In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.

The #P-completeness of 01-permanent, sometimes known as Valiant's theorem, is a mathematical proof about the permanent of matrices, considered a seminal result in computational complexity theory. In a 1979 scholarly paper, Leslie Valiant proved that the computational problem of computing the permanent of a matrix is #P-hard, even if the matrix is restricted to have entries that are all 0 or 1. In this restricted case, computing the permanent is even #P-complete, because it corresponds to the #P problem of counting the number of permutation matrices one can get by changing ones into zeroes.

Quantum complexity theory is the subfield of computational complexity theory that deals with complexity classes defined using quantum computers, a computational model based on quantum mechanics. It studies the hardness of computational problems in relation to these complexity classes, as well as the relationship between quantum complexity classes and classical complexity classes.

<span class="mw-page-title-main">Cycle basis</span> Cycles in a graph that generate all cycles

In graph theory, a branch of mathematics, a cycle basis of an undirected graph is a set of simple cycles that forms a basis of the cycle space of the graph. That is, it is a minimal set of cycles that allows every even-degree subgraph to be expressed as a symmetric difference of basis cycles.

The Fisher–Kasteleyn–Temperley (FKT) algorithm, named after Michael Fisher, Pieter Kasteleyn, and Neville Temperley, counts the number of perfect matchings in a planar graph in polynomial time. This same task is #P-complete for general graphs. For matchings that are not required to be perfect, counting them remains #P-complete even for planar graphs. The key idea of the FKT algorithm is to convert the problem into a Pfaffian computation of a skew-symmetric matrix derived from a planar embedding of the graph. The Pfaffian of this matrix is then computed efficiently using standard determinant algorithms.

<span class="mw-page-title-main">Planar cover</span> Graph theory concept

In graph theory, a planar cover of a finite graph G is a finite covering graph of G that is itself a planar graph. Every graph that can be embedded into the projective plane has a planar cover; an unsolved conjecture of Seiya Negami states that these are the only graphs with planar covers.

References

  1. 1 2 Fellows, M. R.; Langston, M. A. (1988). "Nonconstructive tools for proving polynomial-time decidability". Journal of the ACM. 35 (3): 727. doi: 10.1145/44483.44491 . S2CID   16587284.
  2. Brown, D. J.; Fellows, M. R.; Langston, M. A. (2007). "Polynomial-time self-reducibility: Theoretical motivations and practical results∗". International Journal of Computer Mathematics. 31 (1–2): 1–9. doi:10.1080/00207168908803783.
  3. 1 2 Grebinski, V.; Kucherov, G. (2000). "Optimal Reconstruction of Graphs under the Additive Model" (PDF). Algorithmica. 28: 104–124. doi:10.1007/s004530010033. S2CID   33176053.
  4. Kimmel, S. (2013). "Quantum Adversary (Upper) Bound". Chicago Journal of Theoretical Computer Science. 19: 1–14. arXiv: 1101.0797 . doi:10.4086/cjtcs.2013.004. S2CID   119264518.

Credits

The references in this page were collected from the following Stack Exchange threads:

See also