Novikov's condition

Last updated

In probability theory, Novikov's condition is the sufficient condition for a stochastic process which takes the form of the Radon–Nikodym derivative in Girsanov's theorem to be a martingale. If satisfied together with other conditions, Girsanov's theorem may be applied to a Brownian motion stochastic process to change from the original measure to the new measure defined by the Radon–Nikodym derivative.

Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of these outcomes is called an event.

Stochastic process mathematical object usually defined as a collection of random variables

In probability theory and related fields, a stochastic or random process is a mathematical object usually defined as a collection of random variables. Historically, the random variables were associated with or indexed by a set of numbers, usually viewed as points in time, giving the interpretation of a stochastic process representing numerical values of some system randomly changing over time, such as the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. They have applications in many disciplines including sciences such as biology, chemistry, ecology, neuroscience, and physics as well as technology and engineering fields such as image processing, signal processing, information theory, computer science, cryptography and telecommunications. Furthermore, seemingly random changes in financial markets have motivated the extensive use of stochastic processes in finance.

Martingale (probability theory) model in probability theory

In probability theory, a martingale is a sequence of random variables for which, at a particular time, the conditional expectation of the next value in the sequence, given all prior values, is equal to the present value.

This condition was suggested and proved by Alexander Novikov. There are other results which may be used to show that the Radon–Nikodym derivative is a martingale, such as the more general criterion Kazamaki's condition, however Novikov's condition is the most well-known result.

Alexander Novikov is a professor of mathematics at the Department of Mathematical Sciences, University of Technology Sydney.

In mathematics Kazamaki's condition gives a sufficient criterion ensuring that the Doléans-Dade exponential of a local martingale is a true martingale. This is particularly important if Girsanov's theorem is to be applied to perform a change of measure. Kazamaki's condition is more general than Novikov's condition.

Assume that is a real valued adapted process on the probability space and is an adapted Brownian motion: [1] :334

Brownian motion Random motion of particles suspended in a fluid

Brownian motion or pedesis is the random motion of particles suspended in a fluid resulting from their collision with the fast-moving molecules in the fluid.

If the condition

is fulfilled then the process

is a martingale under the probability measure and the filtration . Here denotes the Doléans-Dade exponential.

In mathematics, a filtration is an indexed set of subobjects of a given algebraic structure , with the index running over some index set that is a totally ordered set, subject to the condition that

In stochastic calculus, the Doléans-Dade exponential, Doléans exponential, or stochastic exponential, of a semimartingale X is defined to be the solution to the stochastic differential equation dYt = Yt dXt with initial condition Y0 = 1. The concept is named after Catherine Doléans-Dade. It is sometimes denoted by Ɛ(X). In the case where X is differentiable, then Y is given by the differential equation dY/dt = Y dX/dt to which the solution is Y = exp(XX0). Alternatively, if Xt = σBt + μt for a Brownian motion B, then the Doléans-Dade exponential is a geometric Brownian motion. For any continuous semimartingale X, applying Itō's lemma with ƒ(Y) = log(Y) gives

Related Research Articles

Wiener process Stochastic process generalizing Brownian motion

In mathematics, the Wiener process is a continuous-time stochastic process named in honor of Norbert Wiener. It is often called standard Brownian motion process or Brownian motion due to its historical connection with the physical process known as Brownian movement or Brownian motion originally observed by Robert Brown. It is one of the best known Lévy processes and occurs frequently in pure and applied mathematics, economics, quantitative finance, evolutionary biology, and physics.

Girsanov theorem theorem

In probability theory, the Girsanov theorem describes how the dynamics of stochastic processes change when the original measure is changed to an equivalent probability measure. The theorem is especially important in the theory of financial mathematics as it tells how to convert from the physical measure, which describes the probability that an underlying instrument will take a particular value or values, to the risk-neutral measure which is a very useful tool for pricing derivatives on the underlying instrument.

In mathematics, the Radon–Nikodym theorem is a result in measure theory. It involves a measurable space on which two σ-finite measures are defined, and . It states that, if , then there is a measurable function , such that for any measurable set ,

In mathematical finance, a risk-neutral measure is a probability measure such that each share price is exactly equal to the discounted expectation of the share price under this measure. This is heavily used in the pricing of financial derivatives due to the fundamental theorem of asset pricing, which implies that in a complete market a derivative's price is the discounted expected value of the future payoff under the unique risk-neutral measure. Such a measure exists if and only if the market is arbitrage-free.

In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations.

Stopping time specific type of “random time”: a random variable whose value is interpreted as the time at which a given stochastic process exhibits a certain behavior of interest

In probability theory, in particular in the study of stochastic processes, a stopping time is a specific type of “random time”: a random variable whose value is interpreted as the time at which a given stochastic process exhibits a certain behavior of interest. A stopping time is often defined by a stopping rule, a mechanism for deciding whether to continue or stop a process on the basis of the present position and past events, and which will almost always lead to a decision to stop at some finite time.

Itô calculus Calculus of stochastic differential equations

Itô calculus, named after Kiyoshi Itô, extends the methods of calculus to stochastic processes such as Brownian motion. It has important applications in mathematical finance and stochastic differential equations.

In mathematics, quadratic variation is used in the analysis of stochastic processes such as Brownian motion and other martingales. Quadratic variation is just one kind of variation of a process.

In probability theory, the martingale representation theorem states that a random variable that is measurable with respect to the filtration generated by a Brownian motion can be written in terms of an Itô integral with respect to this Brownian motion.

Martingale pricing is a pricing approach based on the notions of martingale and risk neutrality. The martingale pricing approach is a cornerstone of modern quantitative finance and can be applied to a variety of derivatives contracts, e.g. options, futures, interest rate derivatives, credit derivatives, etc.

In mathematics, progressive measurability is a property in the theory of stochastic processes. A progressively measurable process, while defined quite technically, is important because it implies the stopped process is measurable. Being progressively measurable is a strictly stronger property than the notion of being an adapted process. Progressively measurable processes are important in the theory of Itô integrals.

In mathematics, the integral representation theorem for classical Wiener space is a result in the fields of measure theory and stochastic analysis. Essentially, it shows how to decompose a function on classical Wiener space into the sum of its expected value and an Itō integral.

In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; in particular, every local martingale that is bounded from below is a supermartingale, and every local martingale that is bounded from above is a submartingale; however, in general a local martingale is not a martingale, because its expectation can be distorted by large values of small probability. In particular, a driftless diffusion process is a local martingale, but not necessarily a martingale.

In mathematics, a Bessel process, named after Friedrich Bessel, is a type of stochastic process.

In mathematics, Doob's martingale inequality is a result in the study of stochastic processes. It gives a bound on the probability that a stochastic process exceeds any given value over a given interval of time. As the name suggests, the result is usually given in the case that the process is a non-negative martingale, but the result is also valid for non-negative submartingales.

In mathematics, a reversible diffusion is a specific example of a reversible stochastic process. Reversible diffusions have an elegant characterization due to the Russian mathematician Andrey Nikolaevich Kolmogorov.

In probability theory, the optional stopping theorem says that, under certain conditions, the expected value of a martingale at a stopping time is equal to its initial expected value. Since martingales can be used to model the wealth of a gambler participating in a fair game, the optional stopping theorem says that, on average, nothing can be gained by stopping play based on the information obtainable so far. Certain conditions are necessary for this result to hold true. In particular, the theorem applies to doubling strategies.

The Brownian motion models for financial markets are based on the work of Robert C. Merton and Paul A. Samuelson, as extensions to the one-period market models of Harold Markowitz and William F. Sharpe, and are concerned with defining the concepts of financial assets and markets, portfolios, gains and wealth in terms of continuous-time stochastic processes.

In mathematics, the Poisson boundary is a measure space associated to a random walk. It is an object designed to encode the asymptotic behaviour of the random walk, i.e. how trajectories diverge when the number of steps goes to infinity. Despite being called a boundary it is in general a purely measure-theoretical object and not a boundary in the topological sense. However, in the case where the random walk is on a topological space the Poisson boundary can be related to the Martin boundary which is an analytic construction yielding a genuine topological boundary. Both boundaries are related to harmonic functions on the space via generalisations of the Poisson formula.

References

  1. Pascucci, Andrea (2011). PDE and Martingale Methods in Option Pricing. Bocconi & Springer. 2. Milan: Springer-Verlag. ISBN   978-88-470-1780-1.