Obcell

Last updated

Obcells are hypothetical proto-organisms or the earliest form of life. The term was first proposed by Thomas Cavalier-Smith in 2001. According to Cavalier-Smith's theory for the origin of the first cell, two cup-shaped obcells or hemicells fused to make a protocell with double-lipid layer envelope, internal genome and ribosomes, protocytosol, and periplasm. [1]

Contents

Hypothesis

The beginning of life and living organisms is difficult to specifically date as proto-organisms' earliest existence left no paleontological clues. Cavalier-Smith argues that initially there was primordial soup which contained amino acids, the building blocks for proteins. Replication and phosphorylation were not relevant until the prebiotic soup started to become organized into the "nucleic acid" era. Although still not "living," the substances during this period could replicate and undergo organized chemical processes. Based on these orderly processes, the world transitioned into an obcell world which included coding for proteins and chromosomes and the symbiotic interactions between membranes, genes, and enzymes. Obcells probably had a single membrane that was lipid-dense and also had specific cytoskeletal proteins that gave the obcells its curvature. These skeletal proteins were probably contained within the obcell's protoperiplasm.

Role of polyphosphate

Based on the high concentration of phosphate in the Earth's crust, [2] the universal metabolism of pyrophosphate and polyP in modern cells, [3] the ability to form phosphates abiotically, and its simplicity compared to nucleotides and nucleic acids, replication probably began on phosphate-rich mineral surfaces and involved phosphate related enzymes. Replicases are necessary for the genetic code to have existed, so Cavalier-Smith argues that "polyP kinases and pyrophosphate kinases may have been among the earliest protein-coded catalysts." If these did exist, then polyP-binding proteins would have been the most useful source of energy for the obcells. Due to its anionic properties, it is quite plausible that while immersed in the nucleotide and nucleic acid rich environment, polyP-binding proteins could have polymerized with these substances. Therefore, obcells with exonucleases attached to their membrane would have had an advantage for replication compared to those that did not. [1] In modern cells, glucokinases typically have two different phosphate-binding domains, mainly containing the amino acids glycine, threonine, and aspartate. [4] Therefore, Cavalier-Smith proposes that these shared domains could have originated in obcells to bind to pyrophosphate. [1]

Living conditions

Cavalier-Smith argues that the most plausible location for obcells to survive and grow in number on Earth was by the land-water interface, not by oceanic seafloor vents. [1] Due to their likely dependence on polyP and pyrophosphate for energy over adenosine triphosphate, obcells would likely congregate in areas where these minerals were formed in high concentrations. Polyphosphate could easily be formed by the seashore in "small salty pools, porous sediments, or protosoils." At lower temperatures, nucleic acids are more stable [5] and shorter chain lipids can form membranes easier. [2] Combined with their dependence on polyP and pyrophosphate, the lower temperatures at the land-water interface the most likely habitat for obcells to evolve. In these conditions, the extreme temperature changes and heterogeneity of external components could induce sharp changes in the structure and function of colonizing obcells which is more likely to lead to the evolution of protocells compared to stable temperatures and homogeneous external components. [1]

Phosphorylation

From the obcells' dependence on polyP and pyrophosphate for energy, their metabolism did not rely on oxidative phosphorylation or photophosphorylation. These processes were too complex for the simple nature of obcells. Cavalier-Smith calls the obcells' phosphorylation of these minerals for energy "lithophosphorylation", which is simple and possible from the existence of kinases that could catalyze polyP- binding proteins and pyrophosphate-binding proteins. From this, it is likely that obcells had these kinases on their surfaces to react with these external polyP-binding and pyrophosphate proteins. Polyphosphate and pyrophosphate were possibly small enough to diffuse into obcells. Therefore, it also likely that some of these kinases were in the obcell lumen to react with these proteins and then store them for later use. This storage would be beneficial for obcells in times when the concentration of external polyP-binding proteins and pyrophosphate-binding proteins would vary. [1]

Replication

Division

Since obcells were cup-shaped and could expose their chromosomes to the harsh environment, to protect their genetic information and any signaling factors, obcells could attach to polyphosphate surfaces using local adhesin proteins. During division, division proteins would begin to pinch the obcell in half, separating the internal components between the two daughter obcells. As this pinching was occurring, the structural integrity of the membrane began to weaken and the two halves would migrate towards the polyphosphate surface. Adhesin proteins would attach these ends to the surface and division would be complete. [1]

Fusion

Over several millions of years, obcells managed to survive off division only. Eventually, obcells evolved to fuse into proto-organisms for added protection of their internal components and the decreased probability of the loss of oligosaccharides during division. Two obcells would come in contact with each other and would adhere together by the adhesion proteins at the rims of both. This adhesion could also be firmer than on the polyphosphate surfaces without restricting division and growth. The fusions of obcells lead to the creation of cytosol, compared to obcell division. From this, the membrane began to change into a cytoplasmic side and an outer side, the preliminary double membrane of modern protocells. In order to prevent the obcells from completely fusing together, it is believed that the after the two obcells adhered together, the adhesin proteins continued to act as plugs. These points of adhesion could have allowed transport for some substances between the cytosol and environment, but these could have evolved into Bayer's patches which are breaks between the cytoplasmic side and outer side of the membrane in gram-negative bacteria. [1]

Related Research Articles

<span class="mw-page-title-main">Adenosine triphosphate</span> Energy-carrying molecule in living cells

Adenosine triphosphate (ATP) is a nucleoside triphosphate that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known forms of life, it is often referred to as the "molecular unit of currency" for intracellular energy transfer.

<span class="mw-page-title-main">Tyrosine kinase</span> Enzyme

A tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to the tyrosine residues of specific proteins inside a cell. It functions as an "on" or "off" switch in many cellular functions.

<span class="mw-page-title-main">Pyrophosphate</span> Class of chemical compounds

In chemistry, pyrophosphates are phosphorus oxyanions that contain two phosphorus atoms in a P−O−P linkage. A number of pyrophosphate salts exist, such as disodium pyrophosphate and tetrasodium pyrophosphate, among others. Often pyrophosphates are called diphosphates. The parent pyrophosphates are derived from partial or complete neutralization of pyrophosphoric acid. The pyrophosphate bond is also sometimes referred to as a phosphoanhydride bond, a naming convention which emphasizes the loss of water that occurs when two phosphates form a new P−O−P bond, and which mirrors the nomenclature for anhydrides of carboxylic acids. Pyrophosphates are found in ATP and other nucleotide triphosphates, which are important in biochemistry. The term pyrophosphate is also the name of esters formed by the condensation of a phosphorylated biological compound with inorganic phosphate, as for dimethylallyl pyrophosphate. This bond is also referred to as a high-energy phosphate bond.

<span class="mw-page-title-main">Index of biochemistry articles</span>

Biochemistry is the study of the chemical processes in living organisms. It deals with the structure and function of cellular components such as proteins, carbohydrates, lipids, nucleic acids and other biomolecules.

The iron–sulfur world hypothesis is a set of proposals for the origin of life and the early evolution of life advanced in a series of articles between 1988 and 1992 by Günter Wächtershäuser, a Munich patent lawyer with a degree in chemistry, who had been encouraged and supported by philosopher Karl R. Popper to publish his ideas. The hypothesis proposes that early life may have formed on the surface of iron sulfide minerals, hence the name. It was developed by retrodiction from extant biochemistry in conjunction with chemical experiments.

<span class="mw-page-title-main">Nucleoside-diphosphate kinase</span> Class of enzymes

Nucleoside-diphosphate kinases are enzymes that catalyze the exchange of terminal phosphate between different nucleoside diphosphates (NDP) and triphosphates (NTP) in a reversible manner to produce nucleotide triphosphates. Many NDP serve as acceptor while NTP are donors of phosphate group. The general reaction via ping-pong mechanism is as follows: XDP + YTP ←→ XTP + YDP. NDPK activities maintain an equilibrium between the concentrations of different nucleoside triphosphates such as, for example, when guanosine triphosphate (GTP) produced in the citric acid (Krebs) cycle is converted to adenosine triphosphate (ATP). Other activities include cell proliferation, differentiation and development, signal transduction, G protein-coupled receptor, endocytosis, and gene expression.

<span class="mw-page-title-main">Phosphatidylinositol 3,4-bisphosphate</span>

Phosphatidylinositol (3,4)-bisphosphate is a minor phospholipid component of cell membranes, yet an important second messenger. The generation of PtdIns(3,4)P2 at the plasma membrane activates a number of important cell signaling pathways.

<span class="mw-page-title-main">Glyceraldehyde 3-phosphate dehydrogenase</span> Enzyme of the glycolysis metabolic pathway

Glyceraldehyde 3-phosphate dehydrogenase is an enzyme of about 37kDa that catalyzes the sixth step of glycolysis and thus serves to break down glucose for energy and carbon molecules. In addition to this long established metabolic function, GAPDH has recently been implicated in several non-metabolic processes, including transcription activation, initiation of apoptosis, ER-to-Golgi vesicle shuttling, and fast axonal, or axoplasmic transport. In sperm, a testis-specific isoenzyme GAPDHS is expressed.

GRE Subject Biochemistry, Cell and Molecular Biology was a standardized exam provided by ETS that was discontinued in December 2016. It is a paper-based exam and there are no computer-based versions of it. ETS places this exam three times per year: once in April, once in October and once in November. Some graduate programs in the United States recommend taking this exam, while others require this exam score as a part of the application to their graduate programs. ETS sends a bulletin with a sample practice test to each candidate after registration for the exam. There are 180 questions within the biochemistry subject test.

Chemical modification refers to a number of various processes involving the alteration of the chemical constitution or structure of molecules.

<span class="mw-page-title-main">Diphosphomevalonate decarboxylase</span> InterPro Family

Diphosphomevalonate decarboxylase (EC 4.1.1.33), most commonly referred to in scientific literature as mevalonate diphosphate decarboxylase, is an enzyme that catalyzes the chemical reaction

Exopolyphosphatase (PPX) is a phosphatase enzyme which catalyzes the hydrolysis of inorganic polyphosphate, a linear molecule composed of up to 1000 or more monomers linked by phospho-anhydride bonds. PPX is a processive exophosphatase, which means that it begins at the ends of the polyphosphate chain and cleaves the phospho-anhydride bonds to release orthophosphate as it moves along the polyphosphate molecule. PPX has several characteristics which distinguish it from other known polyphosphatases, namely that it does not act on ATP, has a strong preference for long chain polyphosphate, and has a very low affinity for polyphosphate molecules with less than 15 phosphate monomers.

<span class="mw-page-title-main">Phosphatidate phosphatase</span>

The enzyme phosphatidate phosphatase (PAP, EC 3.1.3.4) is a key regulatory enzyme in lipid metabolism, catalyzing the conversion of phosphatidate to diacylglycerol:

<span class="mw-page-title-main">Outline of cell biology</span> Overview of and topical guide to cell biology

The following outline is provided as an overview of and topical guide to cell biology:

In enzymology, a polyphosphate kinase, or polyphosphate polymerase, is an enzyme that catalyzes the formation of polyphosphate from ATP, with chain lengths of up to a thousand or more orthophosphate moieties.

A protocell is a self-organized, endogenously ordered, spherical collection of lipids proposed as a rudimentary precursor to cells during the origin of life. A central question in evolution is how simple protocells first arose and how their progeny could diversify, thus enabling the accumulation of novel biological emergences over time. Although a functional protocell has not yet been achieved in a laboratory setting, the goal to understand the process appears well within reach.

Src kinase family is a family of non-receptor tyrosine kinases that includes nine members: Src, Yes, Fyn, and Fgr, forming the SrcA subfamily, Lck, Hck, Blk, and Lyn in the SrcB subfamily, and Frk in its own subfamily. Frk has homologs in invertebrates such as flies and worms, and Src homologs exist in organisms as diverse as unicellular choanoflagellates, but the SrcA and SrcB subfamilies are specific to vertebrates. Src family kinases contain six conserved domains: a N-terminal myristoylated segment, a SH2 domain, a SH3 domain, a linker region, a tyrosine kinase domain, and C-terminal tail.

A scenario is a set of related concepts pertinent to the origin of life (abiogenesis), such as the iron-sulfur world. Many alternative abiogenesis scenarios have been proposed by scientists in a variety of fields from the 1950s onwards in an attempt to explain how the complex mechanisms of life could have come into existence. These include hypothesized ancient environments that might have been favourable for the origin of life, and possible biochemical mechanisms.

This glossary of cellular and molecular biology is a list of definitions of terms and concepts commonly used in the study of cell biology, molecular biology, and related disciplines, including molecular genetics, biochemistry, and microbiology. It is split across two articles:

This glossary of cellular and molecular biology is a list of definitions of terms and concepts commonly used in the study of cell biology, molecular biology, and related disciplines, including genetics, biochemistry, and microbiology. It is split across two articles:

References

  1. 1 2 3 4 5 6 7 8 Cavalier-Smith T (2001). "Obcells as proto-organisms: membrane heredity, lithophosphorylation, and the origins of the genetic code, the first cells, and photosynthesis". J. Mol. Evol. 53 (4–5): 555–95. Bibcode:2001JMolE..53..555C. CiteSeerX   10.1.1.607.8378 . doi:10.1007/s002390010245. PMID   11675615. S2CID   21832452.
  2. 1 2 Deamer, David (June 1997). "The First Living Systems: a Bioenergetic Perspective". Microbiology and Molecular Biology Reviews. 61 (2): 239–61. doi:10.1128/mmbr.61.2.239-261.1997. PMC   232609 . PMID   9184012.
  3. Kornberg, A (1999). "Inorganic Polyphosphate: a Molecule of Many Functions". Annual Review of Biochemistry. 68: 89–125. doi:10.1146/annurev.biochem.68.1.89. PMID   10872445.
  4. Hsieh, P (March 1996). "Cloning, Expression, and Characterization of Polyphosphate Glucokinase from Mycobacterium Tuberculosis". National Center of Biotechnology Information.
  5. Levy, Matthew (July 7, 1998). "The Stability of the RNA Bases: Implications for the Origin of Life". Proceedings of the National Academy of Sciences of the United States of America. 95 (14): 7933–7938. Bibcode:1998PNAS...95.7933L. doi: 10.1073/pnas.95.14.7933 . PMC   20907 . PMID   9653118.