Offshore crane shock absorber

Last updated

An offshore crane shock absorber is a gas spring with hydraulic damping used to reduce dynamic loads during offshore lifting. The lifting capacity of the offshore crane can be increased significantly during lifting in high sea states if a shock absorber is fitted. [1]

Contents

Crane design load

Offshore lifting capacity is governed by classification society rules. The fundamental rule is that the design load should not be exceeded. The design load is given by:


Where:
- Crane design load
- Dynamic coefficient
- Safe working load
- Acceleration of gravity

The classification societies require that ≥1.3 for offshore cranes. This means that cannot exceed even for platform lifts. [2] [3] [4]

Dynamic load

To calculate the dynamic load the classification societies use energy equations. The kinetic energy of the load is expressed as:

Where:
- Kinetic energy of the load
- Relative velocity between crane hook and load

Energy absorbed by the crane is given by:

Where:
- Spring energy stored in crane structure
- Stiffness of offshore crane
- Vertical displacement of crane hook

The spring force is given by:

Combining the two previous equations yields an alternative description of the energy stored in the crane structure:

During an offshore lift the crane does not start to absorb energy from the load before the force in the crane wire exceeds the static weight of the load, which means that we can write the energy absorption of the crane as:


Setting equal to :

And solving for :


The dynamic factor will always be larger than 1 because there will always be a velocity difference between the crane hook and the load during offshore lifts. The value of determines the lifting capacity as a function of which is dependent on the significant wave height. If the offshore crane has a shock absorber mounted it will absorb energy according to:

Where:
- Energy absorbed by shock absorber
- Stroke utilization (safety factor), standard value 0.9
- Efficiency of shock absorber, usually possible to get close to 0.9
- Stroke length

Adding this to the energy balance yields:

Dynamic coefficient versus relative velocity Dynamic load.png
Dynamic coefficient versus relative velocity



Again solving for ψ:


The plot to the right shows the effect of the shock absorber stroke length.

Estimating relative velocity

The relative velocity is defined by several classification societies as:


Where:
- Maximum crane lifting velocity at this SWL
- Vertical velocity of the deck which the load is placed on
- Vertical velocity of the crane tip due to wave motion

has to be gathered from crane user manual or be measured. The deck velocity can be estimated from Table 1.

Table 1: Deck velocity estimation
Lifting from or to
Platform or fixed structure
Supply boat or barge if ≤3
if >3


The crane tip velocity, , can be estimated by Table 2.

Dynamic factor versus significant wave height Dynamic factor versus significant wave heigth.png
Dynamic factor versus significant wave height


Table 2: Crane tip velocity
Lifting from or to
Platform or fixed structure
Tension leg platform or Spar
Semisubmersible
FPSO or drillship


These estimations are conservative and for large ships/rigs they may deviate significantly from reality. A plot of the dynamic factor versus significant wave height for a crane mounted on a semisubmersible and lifting from supply boat is shown above to the right.

Related Research Articles

Feynman diagram Pictorial representation of the behavior of subatomic particles

In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The interaction of subatomic particles can be complex and difficult to understand; Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams are applied primarily to quantum field theory, they can also be used in other fields, such as solid-state theory. Frank Wilczek wrote that the calculations which won him the 2004 Nobel Prize in Physics "would have been literally unthinkable without Feynman diagrams, as would [Wilczek's] calculations that established a route to production and observation of the Higgs particle."

In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-symmetry is an abbreviation of the phrase "charge conjugation symmetry", and is used in discussions of the symmetry of physical laws under charge-conjugation. Other important discrete symmetries are P-symmetry (parity) and T-symmetry.

Gravity wave Wave in or at the interface between fluids where gravity is the main equilibrium force

In fluid dynamics, gravity waves are waves generated in a fluid medium or at the interface between two media when the force of gravity or buoyancy tries to restore equilibrium. An example of such an interface is that between the atmosphere and the ocean, which gives rise to wind waves.

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a quantized version of the relativistic energy–momentum relation. Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. Its theoretical relevance is similar to that of the Dirac equation. Electromagnetic interactions can be incorporated, forming the topic of scalar electrodynamics, but because common spinless particles like the pions are unstable and also experience the strong interaction the practical utility is limited.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

Rayleigh–Taylor instability Unstable behavior of two contacting fluids of different densities

The Rayleigh–Taylor instability, or RT instability, is an instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid. Examples include the behavior of water suspended above oil in the gravity of Earth, mushroom clouds like those from volcanic eruptions and atmospheric nuclear explosions, supernova explosions in which expanding core gas is accelerated into denser shell gas, instabilities in plasma fusion reactors and inertial confinement fusion.

Linearized gravity

In the theory of general relativity, linearized gravity is the application of perturbation theory to the metric tensor that describes the geometry of spacetime. As a consequence, linearized gravity is an effective method for modeling the effects of gravity when the gravitational field is weak. The usage of linearized gravity is integral to the study of gravitational waves and weak-field gravitational lensing.

In mathematical physics, the gamma matrices, , also known as the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra Cl1,3(). It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin-½ particles.

In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In mathematics, a Coulomb wave function is a solution of the Coulomb wave equation, named after Charles-Augustin de Coulomb. They are used to describe the behavior of charged particles in a Coulomb potential and can be written in terms of confluent hypergeometric functions or Whittaker functions of imaginary argument.

Cnoidal wave Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

In quantum field theory, a non-topological soliton (NTS) is a soliton field configuration possessing, contrary to a topological one, a conserved Noether charge and stable against transformation into usual particles of this field for the following reason. For fixed charge Q, the mass sum of Q free particles exceeds the energy (mass) of the NTS so that the latter is energetically favorable to exist.

In general relativity, the Vaidya metric describes the non-empty external spacetime of a spherically symmetric and nonrotating star which is either emitting or absorbing null dusts. It is named after the Indian physicist Prahalad Chunnilal Vaidya and constitutes the simplest non-static generalization of the non-radiative Schwarzschild solution to Einstein's field equation, and therefore is also called the "radiating(shining) Schwarzschild metric".

In quantum field theory, and especially in quantum electrodynamics, the interacting theory leads to infinite quantities that have to be absorbed in a renormalization procedure, in order to be able to predict measurable quantities. The renormalization scheme can depend on the type of particles that are being considered. For particles that can travel asymptotically large distances, or for low energy processes, the on-shell scheme, also known as the physical scheme, is appropriate. If these conditions are not fulfilled, one can turn to other schemes, like the minimal subtraction scheme.

In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the energy–momentum tensor that is constructed from the canonical energy–momentum tensor and the spin current so as to be symmetric yet still conserved.

Weyl equation Relativistic wave equation describing massless fermions

In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.

In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.

References

  1. The Engineers Guide Safelink AS
  2. EN13852-1:2004 Cranes - Offshore cranes - Part 1: General - purpose offshore cranes
  3. DNV Standard For Certification No. 2.22 Lifting Appliances October 2011
  4. API 2C 7th Ed. Specification for Offshore Pedestal-mounted Cranes