This article needs additional citations for verification .(February 2021) |
An oil water separator (OWS) is a piece of equipment used to separate oil and water mixtures into their separate components. There are many different types of oil-water separator. Each has different oil separation capability and are used in different industries. Oil water separators are designed and selected after consideration of oil separation performance parameters and life cycle cost considerations. "Oil" can be taken to mean mineral, vegetable and animal oils, and the many different hydrocarbons.
Oil water separators can be designed to treat a variety of contaminants in water including free floating oil, emulsified oil, dissolved oil and suspended solids. Not all oil separator types are capable of separating all contaminants. The most common performance parameters considered are:
The Florentine flask, also known as florentine vase, florentine vessel, florentine receiver or essencier is a type of separator to gain essential oils or flavor after a distillation process. The phases of water and oil separate in the florentine because the densities are different and most essential oils are not water-soluble.
An API oil–water separator is a device designed to separate gross amounts of oil and suspended solids from the wastewater effluents of oil refineries, petrochemical plants, chemical plants, natural gas processing plants and other industrial sources. The name is derived from the fact that such separators are designed according to API Publication 421, published by the American Petroleum Institute. [1] These separators can be used to separate large oil droplets, typically greater than 150 micron.
The purpose of a shipboard oily water separator is to separate oil and other contaminants that could be harmful for the oceans. They are most commonly found on board ships where they are used to separate oil from oily waste water such as bilge water before the waste water is discharged into the environment. These discharges of waste water must comply with the requirements laid out in Marpol 73/78.
Bilge water is a near-unavoidable product of shipboard operations. Oil leaks from running machinery, such as diesel generators, air compressors, and the main propulsion engine. Modern OWSs have alarms and automatic closure devices which are activated when the oil storage capacity of the oil water separator has been reached.
A gravity plate separator contains a series of plates through which the contaminated water flows. The objective of the design is to allow oil droplets in the water to coalesce on the underside of the plate eventually forming larger oil droplets which floats off the plates and accumulates at the top of the chamber. The oil accumulating at the top is then transferred with some en-trained water to a waste oil tank. This type of oily water separator is very common for many industrial applications as well as in ships but it has some flaws that decrease efficiency. Oil particles that are sixty micrometers in size or smaller do not get separated. Also the presence of chemicals and surfactants in the water greatly reduce oil droplet coalescence, impeding the separation effect The variety of oily wastes in bilge water can limit removal efficiency especially when very dense and highly viscous oils such as bunker oil are present. Plates must be replaced when fouled, which increases the costs of operation. [2]
A centrifugal water–oil separator, centrifugal oil–water separator or centrifugal liquid–liquid separator is a device designed to separate oil and water by centrifugation. It generally contains a cylindrical container that rotates inside a larger stationary container. The denser liquid, usually water, accumulates at the periphery of the rotating container and is collected from the side of the device, whereas the less dense liquid, usually oil, accumulates at the rotation axis and is collected from the center. Centrifugal oil–water separators are used for waste water processing and for cleanup of oil spills on sea or on lake. Centrifugal oil–water separators are also used for filtering diesel and lubricating oils by removing the waste particles and impurity from them. [3]
An oil water separation hydrocyclone is a device designed to separate oil from water by the use of a strong vortex. These separators are passive (no moving parts) and resemble long tapered pipes. They typically contain an inlet section, long tapered section and a long outlet section. In operation the strong vortex is created when the oily water is injected tangentially into the inlet end of the separator. This creates a centrifugal force, that accelerates as it moves down the tapered cone. The centripetal and centrifugal forces separate the heavier water component to the outside of the vortex while the lighter oil droplets are forced to the centre. The separated oils are removed through an orifice at the inlet end of the cone and treated water is discharged through the opposite end. The centrifugal forces generated inside the vortex of the better de-oiling hydrocyclone separators are of the order of 1,000 times the force of gravity. This is why smaller emulsified oil droplets as low as 15 microns can be removed.
Oil removal hydrocyclones, or de-oiling hydrocyclones, are very different in geometry, design and operation compared to the more common solid removal hydrocyclones. When correctly designed and operated oil removal Hydrocyclones are very useful for removing both large oil droplets and smaller emulsified oil droplets in a broad range of applications across many industries. The technology has been successfully applied to treat oily water produced in the mining industry, meat processing, dairy manufacturing, petrochemical, oil refining, oil marketing and oil production operations.
Flotation introduces gas bubbles to enhance oil removal. The gas bubbles attach to the oil droplets to increase the rise rate of the oil. Various flotation methods such as dissolved gas flotation (DGF), dissolved air flotation (DAF), and induced gas flotation (IGF) may be used. Typically this separation step is used following a primary oil–water separation step which is able to remove a large portion of the free oil.
Nut shell filtration uses nut shell media in a vessel to remove oil. Nut shell filters were designed to separate crude oil from oilfield produced water in the 1970s. Typically, nut shell filters are used as a polishing step to achieve low oil concentrations (<10 mg/L). Oil is collected in the interstitial spaces between the media and periodically removed during a backwash procedure.
Wastewater purification of oils and contaminates by electrochemical emulsification is actively in research and development. Electrochemical emulsification involves the generation of electrolytic bubbles that attract pollutants such as sludge and carry them to the top of the treatment chamber. Once at the top of the treatment chamber the oil and other pollutants are transferred to a waste oil tank. [4]
Downhole oil–water separation (DOWS) technology is an emerging technology that separates oil and gas from produced water at the bottom of the well, and re-injects most of the produced water into another formation which is usually deeper than the producing formation, while the oil and gas rich stream is pumped to the surface. DOWS effectively removes solids from the disposal fluid and thus avoids injectivity impairment caused by solids plugging. Simultaneous injection using DOWS minimizes the opportunity for the contamination of underground sources of drinking water (USDWs) through leaks in tubing and casing during the injection process.
Bioremediation is the use of microorganisms to treat contaminated water. A carefully managed environment is needed for the microorganisms which includes nutrients and hydrocarbons such as oil or other contaminates, and oxygen.
In pilot scale studies, bio-remediation was used as one stage in a multi-stage purification process involving a plate separator to remove the majority of the contaminants and was able to treat pollutants at very low concentrations including organic contaminates such as glycerol, solvents, jet fuel, detergents, and phosphates. After treatment of contaminated water, carbon dioxide, water and an organic sludge were the only residual products. [2]
Filtration is a physical separation process that separates solid matter and fluid from a mixture using a filter medium that has a complex structure through which only the fluid can pass. Solid particles that cannot pass through the filter medium are described as oversize and the fluid that passes through is called the filtrate. Oversize particles may form a filter cake on top of the filter and may also block the filter lattice, preventing the fluid phase from crossing the filter, known as blinding. The size of the largest particles that can successfully pass through a filter is called the effective pore size of that filter. The separation of solid and fluid is imperfect; solids will be contaminated with some fluid and filtrate will contain fine particles. Filtration occurs both in nature and in engineered systems; there are biological, geological, and industrial forms.
Hydrocyclones are a type of cyclonic separators that separate product phases mainly on basis of differences in gravity with aqueous solutions as the primary feed fluid.
Cyclonic separation is a method of removing particulates from an air, gas or liquid stream, without the use of filters, through vortex separation. When removing particulate matter from liquid, a hydrocyclone is used; while from gas, a gas cyclone is used. Rotational effects and gravity are used to separate mixtures of solids and fluids. The method can also be used to separate fine droplets of liquid from a gaseous stream.
Industrial wastewater treatment describes the processes used for treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater may be reused or released to a sanitary sewer or to a surface water in the environment. Some industrial facilities generate wastewater that can be treated in sewage treatment plants. Most industrial processes, such as petroleum refineries, chemical and petrochemical plants have their own specialized facilities to treat their wastewaters so that the pollutant concentrations in the treated wastewater comply with the regulations regarding disposal of wastewaters into sewers or into rivers, lakes or oceans. This applies to industries that generate wastewater with high concentrations of organic matter, toxic pollutants or nutrients such as ammonia. Some industries install a pre-treatment system to remove some pollutants, and then discharge the partially treated wastewater to the municipal sewer system.
Electrocoagulation (EC) is a technique used for wastewater treatment, wash water treatment, industrially processed water, and medical treatment. Electrocoagulation has become a rapidly growing area of wastewater treatment due to its ability to remove contaminants that are generally more difficult to remove by filtration or chemical treatment systems, such as emulsified oil, total petroleum hydrocarbons, refractory organics, suspended solids, and heavy metals. There are many brands of electrocoagulation devices available and they can range in complexity from a simple anode and cathode to much more complex devices with control over electrode potentials, passivation, anode consumption, cell REDOX potentials as well as the introduction of ultrasonic sound, ultraviolet light and a range of gases and reactants to achieve so-called Advanced Oxidation Processes for refractory or recalcitrant organic substances.
A dust collector is a system used to enhance the quality of air released from industrial and commercial processes by collecting dust and other impurities from air or gas. Designed to handle high-volume dust loads, a dust collector system consists of a blower, dust filter, a filter-cleaning system, and a dust receptacle or dust removal system. It is distinguished from air purifiers, which use disposable filters to remove dust.
In the upstream oil industry, a gas–oil separation plant (GOSP) is temporary or permanent facilities that separate wellhead fluids into constituent vapor (gas) and liquid components.
A coalescer is a device which induces coalescence in a medium. They are primarily used to separate emulsions into their components via various processes, operating in reverse to an emulsifier.
An oily water separator (OWS) (marine) is a piece of equipment specific to the shipping or marine industry. It is used to separate oil and water mixtures into their separate components. This page refers exclusively to oily water separators aboard marine vessels. They are found on board ships where they are used to separate oil from oily waste water such as bilge water before the waste water is discharged into the environment. These discharges of waste water must comply with the requirements laid out in Marpol 73/78.
An oil production plant is a facility which processes production fluids from oil wells in order to separate out key components and prepare them for export. Typical oil well production fluids are a mixture of oil, gas and produced water. An oil production plant is distinct from an oil depot, which does not have processing facilities.
The term separator in oilfield terminology designates a pressure vessel used for separating well fluids produced from oil and gas wells into gaseous and liquid components. A separator for petroleum production is a large vessel designed to separate production fluids into their constituent components of oil, gas and water. A separating vessel may be referred to in the following ways: Oil and gas separator, Separator, Stage separator, Trap, Knockout vessel, Flash chamber, Expansion separator or expansion vessel, Scrubber, Filter. These separating vessels are normally used on a producing lease or platform near the wellhead, manifold, or tank battery to separate fluids produced from oil and gas wells into oil and gas or liquid and gas. An oil and gas separator generally includes the following essential components and features:
An API oil–water separator is a device designed to separate gross amounts of oil and suspended solids from industrial wastewater produced at oil refineries, petrochemical plants, chemical plants, natural gas processing plants and other industrial oily water sources. The API separator is a gravity separation device designed by using Stokes Law to define the rise velocity of oil droplets based on their density and size. The design is based on the specific gravity difference between the oil and the wastewater because that difference is much smaller than the specific gravity difference between the suspended solids and water. The suspended solids settles to the bottom of the separator as a sediment layer, the oil rises to top of the separator and the cleansed wastewater is the middle layer between the oil layer and the solids.
In chemical engineering, a vapor–liquid separator is a device used to separate a vapor–liquid mixture into its constituent phases. It can be a vertical or horizontal vessel, and can act as a 2-phase or 3-phase separator.
A sand separator is a device that separates sand or other solids from water.
Induced gas flotation (IGF) is a water treatment process that clarifies wastewaters by the removal of suspended matter such as oil or solids. The removal is achieved by injecting gas bubbles into the water or wastewater in a flotation tank or basin. The small bubbles adhere to the suspended matter causing the suspended matter to float to the surface of the water where it may then be removed by a skimming device.
A degasser is a device used in the upstream oil industry to remove dissolved and entrained gases from a liquid. In drilling it is used to remove gasses from drilling fluid which could otherwise form bubbles. In a produced water treatment plant it is part of the process to clean produced water prior to disposal.
A centrifugal water–oil separator, centrifugal oil–water separator or centrifugal liquid–liquid separator is a device designed to separate oil and water by centrifugation. It generally contains a cylindrical container that rotates inside a larger stationary container. The denser liquid, usually water, accumulates at the periphery of the rotating container and is collected from the side of the device, whereas the less dense liquid, usually oil, accumulates at the rotation axis and is collected from the center.
Dissolved gas flotation (DGF) systems are used for a variety of applications throughout the world. The process floats solids, oils and other contaminants to the surface of liquids. Once on the surface these contaminants are skimmed off and removed from the liquids. Oil and gas production facilities have used flotation systems to remove oil and solids from their produced and processed water (wastewater) for many years. The relative density of candle wax is 0.93, hence objects made of wax float on water.
A conical plate centrifuge is a type of centrifuge that has a series of conical discs which provides a parallel configuration of centrifugation spaces.