In mathematics, Oka's lemma, proved by Kiyoshi Oka, states that in a domain of holomorphy in , the function is plurisubharmonic, where is the distance to the boundary. This property shows that the domain is pseudoconvex. Historically, this lemma was first shown in the Hartogs domain in the case of two variables, also Oka's lemma is the inverse of the Levi's problem (unramified Riemann domain over ). So maybe that's why Oka called Levi's problem as "problème inverse de Hartogs", and the Levi's problem is occasionally called Hartogs' Inverse Problem.
The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space, that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.
Kiyoshi Oka was a Japanese mathematician who did fundamental work in the theory of several complex variables.
In mathematics, the Cousin problems are two questions in several complex variables, concerning the existence of meromorphic functions that are specified in terms of local data. They were introduced in special cases by Pierre Cousin in 1895. They are now posed, and solved, for any complex manifold M, in terms of conditions on M.
In mathematics, in the theory of several complex variables and complex manifolds, a Stein manifold is a complex submanifold of the vector space of n complex dimensions. They were introduced by and named after Karl Stein. A Stein space is similar to a Stein manifold but is allowed to have singularities. Stein spaces are the analogues of affine varieties or affine schemes in algebraic geometry.
Complex convexity is a general term in complex geometry.
In mathematics, plurisubharmonic functions form an important class of functions used in complex analysis. On a Kähler manifold, plurisubharmonic functions form a subset of the subharmonic functions. However, unlike subharmonic functions plurisubharmonic functions can be defined in full generality on complex analytic spaces.
In mathematics, a CR manifold, or Cauchy–Riemann manifold, is a differentiable manifold together with a geometric structure modeled on that of a real hypersurface in a complex vector space, or more generally modeled on an edge of a wedge.
In mathematics, more precisely in the theory of functions of several complex variables, a pseudoconvex set is a special type of open set in the n-dimensional complex space Cn. Pseudoconvex sets are important, as they allow for classification of domains of holomorphy.
In mathematics, in the theory of functions of several complex variables, a domain of holomorphy is a domain which is maximal in the sense that there exists a holomorphic function on this domain which cannot be extended to a bigger domain.
In convex analysis and the calculus of variations, both branches of mathematics, a pseudoconvex function is a function that behaves like a convex function with respect to finding its local minima, but need not actually be convex. Informally, a differentiable function is pseudoconvex if it is increasing in any direction where it has a positive directional derivative. The property must hold in all of the function domain, and not only for nearby points.
Mergelyan's theorem is a result from approximation by polynomials in complex analysis proved by the Armenian mathematician Sergei Mergelyan in 1951.
In mathematics, especially several complex variables, the Behnke–Stein theorem states that a union of an increasing sequence of domains of holomorphy is again a domain of holomorphy. It was proved by Heinrich Behnke and Karl Stein in 1938.
In mathematical optimization, linear-fractional programming (LFP) is a generalization of linear programming (LP). Whereas the objective function in a linear program is a linear function, the objective function in a linear-fractional program is a ratio of two linear functions. A linear program can be regarded as a special case of a linear-fractional program in which the denominator is the constant function 1.
In mathematics, the Oka coherence theorem, proved by Kiyoshi Oka, states that the sheaf of holomorphic functions on is coherent.
In several complex variables, the Ohsawa–Takegoshi L2 extension theorem is a fundamental result concerning the holomorphic extension of an -holomorphic function defined on a bounded Stein manifold to a domain of higher dimension, with a bound on the growth. It was discovered by Takeo Ohsawa and Kensho Takegoshi in 1987, using what have been described as ad hoc methods involving twisted Laplace–Beltrami operators, but simpler proofs have since been discovered. Many generalizations and similar results exist, and are known as theorems of Ohsawa–Takegoshi type.
In mathematics — specifically, in the fields of probability theory and inverse problems — Besov measures and associated Besov-distributed random variables are generalisations of the notions of Gaussian measures and random variables, Laplace distributions, and other classical distributions. They are particularly useful in the study of inverse problems on function spaces for which a Gaussian Bayesian prior is an inappropriate model. The construction of a Besov measure is similar to the construction of a Besov space, hence the nomenclature.
Emil Josef Straube is a Swiss and American mathematician.
In mathematics, especially the theory of several complex variables, the Oka–Weil theorem is a result about the uniform convergence of holomorphic functions on Stein spaces due to Kiyoshi Oka and André Weil.
Xiangyu Zhou is a Chinese mathematician, specializing in several complex variables and complex geometry. He is known for his 1998 proof of the "extended future tube conjecture", which was an unsolved problem for almost forty years.
This is a glossary of concepts and results in real analysis and complex analysis in mathematics.