Oligophagy

Last updated
2 Kartoffelkafer.jpg
2

Oligophagy refers to the eating of only a few specific foods, and to monophagy when restricted to a single food source. [1] The term is usually associated with insect dietary behaviour. [2] Organisms may exhibit narrow or specific oligophagy where the diet is restricted to a very few foods or broad oligophagy where the organism feeds on a wide variety of specific foods but none other. [3]

Contents

Polyphagy, on the contrary, refers to eating a broad spectrum of foods. In the insect world it refers usually to insects that feed on plants belonging to different families.

Examples

The diet of the yucca moths is restricted to the developing fruits of species of yucca [3] while the sea hare, Aplysia juliana (Quoy & Gaimard), is found on and feeds only on a single alga, Ulva lactuca (Linnaeus) in east Australian waters. [4] These are both narrow oligophages. Conversely the migratory locust may be said to be broadly oligophagous or even polyphagous. [3]

Footnotes

  1. Sikkim sees surge in butterfly biodiversity - The Hindu
  2. Oligophagy on Dictionary.com. Accessed on 9 January 2010.
  3. 1 2 3 Huffaker & Gutierrez Ecological Entomology, pg 201.
  4. Rogers et al (1995).

Related Research Articles

<span class="mw-page-title-main">Metamorphosis</span> Profound change in body structure during the postembryonic development of an organism

Metamorphosis is a biological process by which an animal physically develops including birth transformation or hatching, involving a conspicuous and relatively abrupt change in the animal's body structure through cell growth and differentiation. Some insects, jellyfish, fish, amphibians, mollusks, crustaceans, cnidarians, echinoderms, and tunicates undergo metamorphosis, which is often accompanied by a change of nutrition source or behavior. Animals can be divided into species that undergo complete metamorphosis ("holometaboly"), incomplete metamorphosis ("hemimetaboly"), or no metamorphosis ("ametaboly").

<span class="mw-page-title-main">Herbivore</span> Organism that eats mostly or exclusively plant material

A herbivore is an animal anatomically and physiologically adapted to eating plant material, for example foliage or marine algae, for the main component of its diet. As a result of their plant diet, herbivorous animals typically have mouthparts adapted to rasping or grinding. Horses and other herbivores have wide flat teeth that are adapted to grinding grass, tree bark, and other tough plant material.

<span class="mw-page-title-main">Predation</span> Biological interaction

Predation is a biological interaction where one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation and parasitoidism. It is distinct from scavenging on dead prey, though many predators also scavenge; it overlaps with herbivory, as seed predators and destructive frugivores are predators.

<span class="mw-page-title-main">Littoral zone</span> Part of a sea, lake, or river that is close to the shore

The littoral zone, also called litoral or nearshore, is the part of a sea, lake, or river that is close to the shore. In coastal ecology, the littoral zone includes the intertidal zone extending from the high water mark, to coastal areas that are permanently submerged — known as the foreshore — and the terms are often used interchangeably. However, the geographical meaning of littoral zone extends well beyond the intertidal zone to include all neritic waters within the bounds of continental shelves.

<span class="mw-page-title-main">Diapause</span> Response delay in animal dormancy

In animal dormancy, diapause is the delay in development in response to regular and recurring periods of adverse environmental conditions. It is a physiological state with very specific initiating and inhibiting conditions. The mechanism is a means of surviving predictable, unfavorable environmental conditions, such as temperature extremes, drought, or reduced food availability. Diapause is observed in all the life stages of arthropods, especially insects.

<span class="mw-page-title-main">Frass</span> Waste from insects

Frass refers loosely to the more or less solid excreta of insects, and to certain other related matter.

A generalist species is able to thrive in a wide variety of environmental conditions and can make use of a variety of different resources. A specialist species can thrive only in a narrow range of environmental conditions or has a limited diet. Most organisms do not all fit neatly into either group, however. Some species are highly specialized, others less so, and some can tolerate many different environments. In other words, there is a continuum from highly specialized to broadly generalist species.

Herbivores are dependent on plants for food, and have coevolved mechanisms to obtain this food despite the evolution of a diverse arsenal of plant defenses against herbivory. Herbivore adaptations to plant defense have been likened to "offensive traits" and consist of those traits that allow for increased feeding and use of a host. Plants, on the other hand, protect their resources for use in growth and reproduction, by limiting the ability of herbivores to eat them. Relationships between herbivores and their host plants often results in reciprocal evolutionary change. When a herbivore eats a plant it selects for plants that can mount a defensive response, whether the response is incorporated biochemically or physically, or induced as a counterattack. In cases where this relationship demonstrates "specificity", and "reciprocity", the species are thought to have coevolved. The escape and radiation mechanisms for coevolution, presents the idea that adaptations in herbivores and their host plants, has been the driving force behind speciation. The coevolution that occurs between plants and herbivores that ultimately results in the speciation of both can be further explained by the Red Queen hypothesis. This hypothesis states that competitive success and failure evolve back and forth through organizational learning. The act of an organism facing competition with another organism ultimately leads to an increase in the organism's performance due to selection. This increase in competitive success then forces the competing organism to increase its performance through selection as well, thus creating an "arms race" between the two species. Herbivores evolve due to plant defenses because plants must increase their competitive performance first due to herbivore competitive success.

Cheating is a term used in behavioral ecology and ethology to describe behavior whereby organisms receive a benefit at the cost of other organisms. Cheating is common in many mutualistic and altruistic relationships. A cheater is an individual who does not cooperate but can potentially gain the benefit from others cooperating. Cheaters are also those who selfishly use common resources to maximize their individual fitness at the expense of a group. Natural selection favors cheating, but there are mechanisms to regulate it. The stress gradient hypothesis states that facilitation, cooperation or mutualism should be more common in stressful environments, while cheating, competition or parasitism are common in benign environments.

<span class="mw-page-title-main">Community (ecology)</span> Associated populations of species in a given area

In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

<span class="mw-page-title-main">Trophic level</span> Position of an organism in a food chain

The trophic level of an organism is the position it occupies in a food web. Within a food web, a food chain is a succession of organisms that eat other organisms and may, in turn, be eaten themselves. The trophic level of an organism is the number of steps it is from the start of the chain. A food web starts at trophic level 1 with primary producers such as plants, can move to herbivores at level 2, carnivores at level 3 or higher, and typically finish with apex predators at level 4 or 5. The path along the chain can form either a one-way flow or a part of a wider food "web". Ecological communities with higher biodiversity form more complex trophic paths.

<span class="mw-page-title-main">Insect ecology</span> The study of how insects interact with the surrounding environment

Insect ecology is the interaction of insects, individually or as a community, with the surrounding environment or ecosystem.

<span class="mw-page-title-main">Omnivore</span> Animal that can eat and survive on both plants and animals

An omnivore is an animal that has the ability to eat and survive on both plant and animal matter. Obtaining energy and nutrients from plant and animal matter, omnivores digest carbohydrates, protein, fat, and fiber, and metabolize the nutrients and energy of the sources absorbed. Often, they have the ability to incorporate food sources such as algae, fungi, and bacteria into their diet.

A consumer in a food chain is a living creature that eats organisms from a different population. A consumer is a heterotroph and a producer is an autotroph. Like sea angels, they take in organic moles by consuming other organisms, so they are commonly called consumers. Heterotrophs can be classified by what they usually eat as herbivores, carnivores, omnivores, or decomposers. On the other hand, autotrophs are organisms that use energy directly from the sun or from chemical bonds. Autotrophs are vital to all ecosystems because all organisms need organic molecules, and only autotrophs can produce them from inorganic compounds. Autotrophs are classified as either photoautotrophs or chemoautotrophs.

<i>Halobates</i> Genus of true bugs

Halobates or sea skaters are a genus with over 40 species of water striders. Most Halobates species are coastal and typically found in sheltered marine habitats, but five live on the surface of the open ocean and only occur near the coast when storms blow them ashore. These are the only known truly oceanic, offshore insects. They are found in tropical and subtropical marine habitats around the world, with a single species recorded in rivers a few kilometers upstream from the ocean. Halobates are generally very common.

<span class="mw-page-title-main">Chemical defense</span>

Chemical defense is a strategy employed by many organisms to avoid consumption by producing toxic or repellent metabolites or chemical warnings which incite defensive behavioral changes. The production of defensive chemicals occurs in plants, fungi, and bacteria, as well as invertebrate and vertebrate animals. The class of chemicals produced by organisms that are considered defensive may be considered in a strict sense to only apply to those aiding an organism in escaping herbivory or predation. However, the distinction between types of chemical interaction is subjective and defensive chemicals may also be considered to protect against reduced fitness by pests, parasites, and competitors. Repellent rather than toxic metabolites are allomones, a sub category signaling metabolites known as semiochemicals. Many chemicals used for defensive purposes are secondary metabolites derived from primary metabolites which serve a physiological purpose in the organism. Secondary metabolites produced by plants are consumed and sequestered by a variety of arthropods and, in turn, toxins found in some amphibians, snakes, and even birds can be traced back to arthropod prey. There are a variety of special cases for considering mammalian antipredatory adaptations as chemical defenses as well.

<span class="mw-page-title-main">Algophagy</span> Obtaining nutrients by consuming algae

Algophagy is a feeding behaviour whereby an animal eats algae as a food source. Algae is a group of photosynthetic organisms that mostly rely on aquatic environments. They grow low to the ground as they lack vascular tissue, an adaptation postdating their origin. While the group of algal species is large, it is generally accepted that algae is high in nutritional value and often contain a variety of concentrated vitamins and minerals.

<span class="mw-page-title-main">Grazing (behaviour)</span> Method of feeding in herbivores, eating grasses and other plants

Grazing is a method of feeding in which a herbivore feeds on low-growing plants such as grasses or other multicellular organisms, such as algae. Many species of animals can be said to be grazers, from large animals such as hippopotamuses to small aquatic snails. Grazing behaviour is a type of feeding strategy within the ecology of a species. Specific grazing strategies include graminivory ; coprophagy ; pseudoruminant ; and grazing on plants other than grass, such as on marine algae.

<span class="mw-page-title-main">Entomophagy</span> Practice of eating insects by organisms

Entomophagy is the practice of eating insects. An alternative term is insectivory. Terms for organisms that practice entomophagy are entomophage and insectivore.

References