This article needs additional citations for verification .(August 2014) |
In network science, the optimization mechanism is a network growth algorithm, which randomly places new nodes in the system, and connects them to the existing nodes based on a cost-benefit analysis. Depending on the parameters used in the optimization mechanism, the algorithm can build three types of networks: a star network, a random network, and a scale-free network. Optimization mechanism [1] is thought to be the underlying mechanism in several real networks, such as transportation networks, power grid, router networks, the network of highways, etc.
The optimization mechanism is a model with growth, in which preferential attachment is valid under certain assumptions. As opposed to the copying model, the optimization model uses global information about the network, to connect the newly entering nodes to the existing ones, thus reducing the amount of randomness in the process. The model's mechanism is based on a cost-benefit comparison, that is for each entering node 'i', the algorithm calculates the net benefit (benefits minus costs) of connecting 'i' to each existing node, and connects node 'i' to the node which gives the highest net benefit. [2]
The costs and benefits in the optimization models can generally be simplified into two attributes: the distance between the new node, and the existing one; and the distance of the existing node from the central node. Thus the goal function can be written in the following form:
In a highway network setting - where cities are nodes and links are highways - would be the physical distance between cities, and would be the distance from the capital (or from the central city of the region). The value of determines the type of the network built by the optimization mechanism. [2]
The optimization mechanism results in a star network, whenever . A unique feature of the star network is that most of the newly added nodes will connect to the central node regardless of the distance. One can think of a star network as a network in which the costs to establish a new link are negligible compared to the benefit of being directly connected to the central node. Star networks are rarely observed in reality.
A random network is built using the optimization method when . In case of a high enough , the costs to establish a new link are enormously high, compared to the benefit of being closely connected to the central node. As a result, most of the new nodes will connect to the closest node available. A real life example is the power grid network, where the cost of building a power line is high, and the benefits of being directly connected to the power source is negligible.
. If is neither too high, nor too low, the mechanism results in a scale-free network, characterised by preferential attachment. The newly added nodes tend to connect to the larger nodes, but sometimes they may connect to middle-size nodes, or even small ones, depending on their distance. Most of the real-life networks characterized by an underlying optimization mechanism are scale-free networks, such as the router network and the highway network.
The travelling salesman problem, also known as the travelling salesperson problem (TSP), asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in theoretical computer science and operations research.
A Boltzmann machine, named after Ludwig Boltzmann is a stochastic spin-glass model with an external field, i.e., a Sherrington–Kirkpatrick model, that is a stochastic Ising model. It is a statistical physics technique applied in the context of cognitive science. It is also classified as a Markov random field.
In machine learning, backpropagation is a gradient estimation method used to train neural network models. The gradient estimate is used by the optimization algorithm to compute the network parameter updates.
The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal–dual methods. It was developed and published in 1955 by Harold Kuhn, who gave it the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry. However, in 2006 it was discovered that Carl Gustav Jacobi had solved the assignment problem in the 19th century, and the solution had been published posthumously in 1890 in Latin.
Stress majorization is an optimization strategy used in multidimensional scaling (MDS) where, for a set of -dimensional data items, a configuration of points in -dimensional space is sought that minimizes the so-called stress function . Usually is or , i.e. the matrix lists points in or dimensional Euclidean space so that the result may be visualised. The function is a cost or loss function that measures the squared differences between ideal distances and actual distances in r-dimensional space. It is defined as:
The Gaussian network model (GNM) is a representation of a biological macromolecule as an elastic mass-and-spring network to study, understand, and characterize the mechanical aspects of its long-time large-scale dynamics. The model has a wide range of applications from small proteins such as enzymes composed of a single domain, to large macromolecular assemblies such as a ribosome or a viral capsid. Protein domain dynamics plays key roles in a multitude of molecular recognition and cell signalling processes. Protein domains, connected by intrinsically disordered flexible linker domains, induce long-range allostery via protein domain dynamics. The resultant dynamic modes cannot be generally predicted from static structures of either the entire protein or individual domains.
In graph theory, a random geometric graph (RGG) is the mathematically simplest spatial network, namely an undirected graph constructed by randomly placing N nodes in some metric space and connecting two nodes by a link if and only if their distance is in a given range, e.g. smaller than a certain neighborhood radius, r.
Network science is an academic field which studies complex networks such as telecommunication networks, computer networks, biological networks, cognitive and semantic networks, and social networks, considering distinct elements or actors represented by nodes and the connections between the elements or actors as links. The field draws on theories and methods including graph theory from mathematics, statistical mechanics from physics, data mining and information visualization from computer science, inferential modeling from statistics, and social structure from sociology. The United States National Research Council defines network science as "the study of network representations of physical, biological, and social phenomena leading to predictive models of these phenomena."
Modularity is a measure of the structure of networks or graphs which measures the strength of division of a network into modules. Networks with high modularity have dense connections between the nodes within modules but sparse connections between nodes in different modules. Modularity is often used in optimization methods for detecting community structure in networks. Biological networks, including animal brains, exhibit a high degree of modularity. However, modularity maximization is not statistically consistent, and finds communities in its own null model, i.e. fully random graphs, and therefore it cannot be used to find statistically significant community structures in empirical networks. Furthermore, it has been shown that modularity suffers a resolution limit and, therefore, it is unable to detect small communities.
In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem.
Clustering is the problem of partitioning data points into groups based on their similarity. Correlation clustering provides a method for clustering a set of objects into the optimum number of clusters without specifying that number in advance.
Capacitated minimum spanning tree is a minimal cost spanning tree of a graph that has a designated root node and satisfies the capacity constraint . The capacity constraint ensures that all subtrees incident on the root node have no more than nodes. If the tree nodes have weights, then the capacity constraint may be interpreted as follows: the sum of weights in any subtree should be no greater than . The edges connecting the subgraphs to the root node are called gates. Finding the optimal solution is NP-hard.
David Bernard Shmoys is a Professor in the School of Operations Research and Information Engineering and the Department of Computer Science at Cornell University. He obtained his Ph.D. from the University of California, Berkeley in 1984. His major focus has been in the design and analysis of algorithms for discrete optimization problems.
Evolving networks are dynamic networks that change through time. In each period there are new nodes and edges that join the network while the old ones disappear. Such dynamic behaviour is characteristic for most real-world networks, regardless of their range - global or local. However, networks differ not only in their range but also in their topological structure. It is possible to distinguish:
A hyperbolic geometric graph (HGG) or hyperbolic geometric network (HGN) is a special type of spatial network where (1) latent coordinates of nodes are sprinkled according to a probability density function into a hyperbolic space of constant negative curvature and (2) an edge between two nodes is present if they are close according to a function of the metric (typically either a Heaviside step function resulting in deterministic connections between vertices closer than a certain threshold distance, or a decaying function of hyperbolic distance yielding the connection probability). A HGG generalizes a random geometric graph (RGG) whose embedding space is Euclidean.
The Louvain method for community detection is a method to extract non-overlapping communities from large networks created by Blondel et al. from the University of Louvain. The method is a greedy optimization method that appears to run in time where is the number of nodes in the network.
In mathematics, the spiral optimization (SPO) algorithm is a metaheuristic inspired by spiral phenomena in nature.
A central problem in algorithmic graph theory is the shortest path problem. One of the generalizations of the shortest path problem is known as the single-source-shortest-paths (SSSP) problem, which consists of finding the shortest paths from a source vertex to all other vertices in the graph. There are classical sequential algorithms which solve this problem, such as Dijkstra's algorithm. In this article, however, we present two parallel algorithms solving this problem.
The mixed Chinese postman problem (MCPP or MCP) is the search for the shortest traversal of a graph with a set of vertices V, a set of undirected edges E with positive rational weights, and a set of directed arcs A with positive rational weights that covers each edge or arc at least once at minimal cost. The problem has been proven to be NP-complete by Papadimitriou. The mixed Chinese postman problem often arises in arc routing problems such as snow ploughing, where some streets are too narrow to traverse in both directions while other streets are bidirectional and can be plowed in both directions. It is easy to check if a mixed graph has a postman tour of any size by verifying if the graph is strongly connected. The problem is NP hard if we restrict the postman tour to traverse each arc exactly once or if we restrict it to traverse each edge exactly once, as proved by Zaragoza Martinez.
In the context of quantum computing, the quantum walk search is a quantum algorithm for finding a marked node in a graph.
{{cite web}}
: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)