Organismic computing is a form of engineered human computation that employs technology to enable "shared sensing, collective reasoning, and coordinated action" [1] within human groups toward goal-directed behavior. This biomimetic approach to augmenting group efficacy seeks to improve synergy by allowing a group of individuals to function as a single intelligent superorganism.
For many tasks, increasing the size of a group leads to diminishing returns. That is, each new person contributes less to overall group performance. This suggests that the benefit-cost ratio associated with adding a new person decreases as the group gets larger. The organismic approach to augmenting group efficacy seeks to leverage the quadratic growth in the number of possible relationships among group members, as described by Metcalfe's law. By increasing the number of relationships realized and by sufficiently increasing the utility of those relationship, each new group member would add more value to the group than previous members.
The organismic model of group efficacy assumes that enabling real-time distributed sensing, reasoning, and acting, using the right augmentation methods, will increase group efficacy via synergistic effects that result from more and improved connections among individuals in a group. Indeed, organismic computing research is focused primarily on the pursuit of augmentation methods that are optimal for different applications of group behavior. Additionally, the application space may dictate a greater emphasis on one of the following members of the "synergistic triad".
Shared sensing is the notion that individual or aggregated sensory experiences are shared in real-time across members of a group, toward greater awareness of information relevant to an individual's goals.
Collective reasoning includes a broad space of methods that enable the creation and dissemination of information due to distributed cognition.
Coordinated action involves methods that enable effective, synchronous group behaviors.
A key challenge in developing effective organismic computing methods is the problem of information overload. Because humans are limited capacity systems, which include both attentional and processing bottlenecks, the availability or imposition of additional information may create interference that reduces goal-related performance.
A 2013 pilot study [1] [2] examined performance in a hide-and-seek task within a simulated augmented reality environment. Synergistic effects seemed to increased with group size and level of augmentation. A 2010 collective intelligence study [3] of group problem solving performance revealed strong evidence that "Group IQ" correlated strongly with the social intelligence of each group member and only weakly with individual IQ, suggesting that interaction dynamics among group members is a better predictor of group problem solving performance than individual problem solving abilities.
Organismic computing, due to its emphasis on agency, is best suited to interaction in the physical, simulated, or augmented world. Thus, potential applications include crisis relief, first response, and counter-terrorism, as well as problem-solving in artificial environments by recasting abstract problems using real-world metaphors.
Behavior or behaviour is the range of actions and mannerisms made by individuals, organisms, systems or artificial entities in some environment. These systems can include other systems or organisms as well as the inanimate physical environment. It is the computed response of the system or organism to various stimuli or inputs, whether internal or external, conscious or subconscious, overt or covert, and voluntary or involuntary.
Psychology is an academic and applied discipline involving the scientific study of human mental functions and behavior. Occasionally, in addition or opposition to employing the scientific method, it also relies on symbolic interpretation and critical analysis, although these traditions have tended to be less pronounced than in other social sciences, such as sociology. Psychologists study phenomena such as perception, cognition, emotion, personality, behavior, and interpersonal relationships. Some, especially depth psychologists, also study the unconscious mind.
In computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.
Bio-inspired computing, short for biologically inspired computing, is a field of study which seeks to solve computer science problems using models of biology. It relates to connectionism, social behavior, and emergence. Within computer science, bio-inspired computing relates to artificial intelligence and machine learning. Bio-inspired computing is a major subset of natural computation.
The g factor is a construct developed in psychometric investigations of cognitive abilities and human intelligence. It is a variable that summarizes positive correlations among different cognitive tasks, reflecting the fact that an individual's performance on one type of cognitive task tends to be comparable to that person's performance on other kinds of cognitive tasks. The g factor typically accounts for 40 to 50 percent of the between-individual performance differences on a given cognitive test, and composite scores based on many tests are frequently regarded as estimates of individuals' standing on the g factor. The terms IQ, general intelligence, general cognitive ability, general mental ability, and simply intelligence are often used interchangeably to refer to this common core shared by cognitive tests. However, the g factor itself is a mathematical construct indicating the level of observed correlation between cognitive tasks. The measured value of this construct depends on the cognitive tasks that are used, and little is known about the underlying causes of the observed correlations.
Collaborative intelligence characterizes multi-agent, distributed systems where each agent, human or machine, is autonomously contributing to a problem solving network. Collaborative autonomy of organisms in their ecosystems makes evolution possible. Natural ecosystems, where each organism's unique signature is derived from its genetics, circumstances, behavior and position in its ecosystem, offer principles for design of next generation social networks to support collaborative intelligence, crowdsourcing individual expertise, preferences, and unique contributions in a problem solving process.
A superintelligence is a hypothetical agent that possesses intelligence far surpassing that of the brightest and most gifted human minds. "Superintelligence" may also refer to a property of problem-solving systems whether or not these high-level intellectual competencies are embodied in agents that act in the world. A superintelligence may or may not be created by an intelligence explosion and associated with a technological singularity.
Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue, whereas the latter is complex problem solving (CPS) with multiple interrelated obstacles. Another classification of problem-solving tasks is into well-defined problems with specific obstacles and goals, and ill-defined problems in which the current situation is troublesome but it is not clear what kind of resolution to aim for. Similarly, one may distinguish formal or fact-based problems requiring psychometric intelligence, versus socio-emotional problems which depend on the changeable emotions of individuals or groups, such as tactful behavior, fashion, or gift choices.
Intelligence amplification (IA) refers to the effective use of information technology in augmenting human intelligence. The idea was first proposed in the 1950s and 1960s by cybernetics and early computer pioneers.
Human-based computation (HBC), human-assisted computation, ubiquitous human computing or distributed thinking is a computer science technique in which a machine performs its function by outsourcing certain steps to humans, usually as microwork. This approach uses differences in abilities and alternative costs between humans and computer agents to achieve symbiotic human–computer interaction. For computationally difficult tasks such as image recognition, human-based computation plays a central role in training Deep Learning-based Artificial Intelligence systems. In this case, human-based computation has been referred to as human-aided artificial intelligence.
The following outline is provided as an overview of and topical guide to artificial intelligence:
The following outline is provided as an overview of and topical guide to thought (thinking):
Einstellung is the development of a mechanized state of mind. Often called a problem solving set, Einstellung refers to a person's predisposition to solve a given problem in a specific manner even though better or more appropriate methods of solving the problem exist.
Collective intelligence (CI) is shared or group intelligence (GI) that emerges from the collaboration, collective efforts, and competition of many individuals and appears in consensus decision making. The term appears in sociobiology, political science and in context of mass peer review and crowdsourcing applications. It may involve consensus, social capital and formalisms such as voting systems, social media and other means of quantifying mass activity. Collective IQ is a measure of collective intelligence, although it is often used interchangeably with the term collective intelligence. Collective intelligence has also been attributed to bacteria and animals.
Lateral computing is a lateral thinking approach to solving computing problems. Lateral thinking has been made popular by Edward de Bono. This thinking technique is applied to generate creative ideas and solve problems. Similarly, by applying lateral-computing techniques to a problem, it can become much easier to arrive at a computationally inexpensive, easy to implement, efficient, innovative or unconventional solution.
Qualitative Reasoning (QR) is an area of research within Artificial Intelligence (AI) that automates reasoning about continuous aspects of the physical world, such as space, time, and quantity, for the purpose of problem solving and planning using qualitative rather than quantitative information. Precise numerical values or quantities are avoided, and qualitative values are used instead (e.g., high, low, zero, rising, falling, etc.).
The following outline is provided as an overview of and topical guide to human intelligence:
Neuroimaging intelligence testing concerns the use of neuroimaging techniques to evaluate human intelligence. Neuroimaging technology has advanced such that scientists hope to use neuroimaging increasingly for investigations of brain function related to IQ.
This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.
Computational psychometrics is an interdisciplinary field fusing theory-based psychometrics, learning and cognitive sciences, and data-driven AI-based computational models as applied to large-scale/high-dimensional learning, assessment, biometric, or psychological data. Computational psychometrics is frequently concerned with providing actionable and meaningful feedback to individuals based on measurement and analysis of individual differences as they pertain to specific areas of enquiry.