Oscilloquartz

Last updated
Oscilloquartz SA (OSA)
Company type Limited company
Industry Telecommunications
Founded1949
Headquarters Saint-Blaise, Switzerland
ProductsCesium clocks, maser clocks, SSU, (also called TSG, SASE or BITS), NTP Time servers, PTP IEEE 1588-2008 Grandmaster and slaves, [1] GPS & GLONASS-based synchronization equipment
Revenue-
Number of employees
-
Website www.oscilloquartz.com

Oscilloquartz, a company of Adtran Inc., is a manufacturer of network and application timing technology including atomic clocks, grandmaster clocks, PTP slave and boundary clocks, GNSS clocks and Time Scale Systems. Oscilloquartz's portfolio also includes its Ensemble synchronization monitoring and management software. Oscilloquartz timing and synchronization products are designed for applications in utilities, defense, finance, IoT, broadcasting and mobile networks, including 5G networks. Its company headquarters is in Saint-Blaise, Switzerland.

Contents

Notable products and solutions

History

Related Research Articles

International Atomic Time is a high-precision atomic coordinate time standard based on the notional passage of proper time on Earth's geoid. TAI is a weighted average of the time kept by over 450 atomic clocks in over 80 national laboratories worldwide. It is a continuous scale of time, without leap seconds, and it is the principal realisation of Terrestrial Time. It is the basis for Coordinated Universal Time (UTC), which is used for civil timekeeping all over the Earth's surface and which has leap seconds.

<span class="mw-page-title-main">Caesium</span> Chemical element with atomic number 55 (Cs)

Caesium is a chemical element; it has symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of 28.5 °C, which makes it one of only five elemental metals that are liquid at or near room temperature. Caesium has physical and chemical properties similar to those of rubidium and potassium. It is pyrophoric and reacts with water even at −116 °C (−177 °F). It is the least electronegative stable element, with a value of 0.79 on the Pauling scale. It has only one stable isotope, caesium-133. Caesium is mined mostly from pollucite. Caesium-137, a fission product, is extracted from waste produced by nuclear reactors. It has the largest atomic radius of all elements whose radii have been measured or calculated, at about 260 picometres.

<span class="mw-page-title-main">Galileo (satellite navigation)</span> European global navigation satellite system

Galileo is a global navigation satellite system (GNSS) created by the European Union through the European Space Agency (ESA) and operated by the European Union Agency for the Space Programme (EUSPA). It is headquartered in Prague, Czechia, with two ground operations centres in Oberpfaffenhofen, Germany, and in Fucino, Italy,. The €10 billion project went live in 2016. It is named after the Italian astronomer Galileo Galilei.

<span class="mw-page-title-main">Hertz</span> SI unit for frequency

The hertz is the unit of frequency in the International System of Units (SI), often described as being equivalent to one event per second. The hertz is an SI derived unit whose formal expression in terms of SI base units is s−1, meaning that one hertz is one per second or the reciprocal of one second. It is used only in the case of periodic events. It is named after Heinrich Rudolf Hertz (1857–1894), the first person to provide conclusive proof of the existence of electromagnetic waves. For high frequencies, the unit is commonly expressed in multiples: kilohertz (kHz), megahertz (MHz), gigahertz (GHz), terahertz (THz).

<span class="mw-page-title-main">Maser</span> Device for producing coherent EM waves in the sub-visible spectrum

A maser is a device that produces coherent electromagnetic waves (microwaves), through amplification by stimulated emission. The term is an acronym for microwave amplification by stimulated emission of radiation. Nikolay Basov, Alexander Prokhorov and Joseph Weber introduced the concept of the maser in 1952, and Charles H. Townes, James P. Gordon, and Herbert J. Zeiger built the first maser at Columbia University in 1953. Townes, Basov and Prokhorov won the 1964 Nobel Prize in Physics for theoretical work leading to the maser. Masers are used as timekeeping devices in atomic clocks, and as extremely low-noise microwave amplifiers in radio telescopes and deep-space spacecraft communication ground-stations.

<span class="mw-page-title-main">Second</span> SI unit of time

The second is a unit of time, historically defined as 186400 of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds each.

<span class="mw-page-title-main">Frequency standard</span> Stable oscillator used for frequency calibration or reference

A frequency standard is a stable oscillator used for frequency calibration or reference. A frequency standard generates a fundamental frequency with a high degree of accuracy and precision. Harmonics of this fundamental frequency are used to provide reference points.

A time standard is a specification for measuring time: either the rate at which time passes or points in time or both. In modern times, several time specifications have been officially recognized as standards, where formerly they were matters of custom and practice. An example of a kind of time standard can be a time scale, specifying a method for measuring divisions of time. A standard for civil time can specify both time intervals and time-of-day.

<span class="mw-page-title-main">United States Naval Observatory</span> Scientific agency in the United States

The United States Naval Observatory (USNO) is a scientific and military facility that produces geopositioning, navigation and timekeeping data for the United States Navy and the United States Department of Defense. Established in 1830 as the Depot of Charts and Instruments, it is one of the oldest scientific agencies in the United States, and remains the country's leading facility for astronomical and timing data.

Time and frequency transfer is a scheme where multiple sites share a precise reference time or frequency. The technique is commonly used for creating and distributing standard time scales such as International Atomic Time (TAI). Time transfer solves problems such as astronomical observatories correlating observed flashes or other phenomena with each other, as well as cell phone towers coordinating handoffs as a phone moves from one cell to another.

<span class="mw-page-title-main">Radio clock</span> Type of clock which self-synchronizes its time using dedicated radio transmitters

A radio clock or radio-controlled clock (RCC), and often colloquially referred to as an "atomic clock", is a type of quartz clock or watch that is automatically synchronized to a time code transmitted by a radio transmitter connected to a time standard such as an atomic clock. Such a clock may be synchronized to the time sent by a single transmitter, such as many national or regional time transmitters, or may use the multiple transmitters used by satellite navigation systems such as Global Positioning System. Such systems may be used to automatically set clocks or for any purpose where accurate time is needed. Radio clocks may include any feature available for a clock, such as alarm function, display of ambient temperature and humidity, broadcast radio reception, etc.

<span class="mw-page-title-main">DCF77</span> German time signal radio station

DCF77 is a German longwave time signal and standard-frequency radio station. It started service as a standard-frequency station on 1 January 1959. In June 1973 date and time information was added. Its primary and backup transmitter are located at 50°0′56″N9°00′39″E in Mainflingen, about 25 km (20 mi) south-east of Frankfurt am Main, Germany. The transmitter generates a nominal power of 50 kW, of which about 30 to 35 kW can be radiated via a T-antenna.

Many services running on modern digital telecommunications networks require accurate synchronization for correct operation. For example, if telephone exchanges are not synchronized, then bit slips will occur and degrade performance. Telecommunication networks rely on the use of highly accurate primary reference clocks which are distributed network-wide using synchronization links and synchronization supply units.

<span class="mw-page-title-main">Quasi-Zenith Satellite System</span> Navigation satellites

The Quasi-Zenith Satellite System (QZSS), also known as Michibiki (みちびき), is a four-satellite regional satellite navigation system and a satellite-based augmentation system developed by the Japanese government to enhance the United States-operated Global Positioning System (GPS) in the Asia-Oceania regions, with a focus on Japan. The goal of QZSS is to provide highly precise and stable positioning services in the Asia-Oceania region, compatible with GPS. Four-satellite QZSS services were available on a trial basis as of 12 January 2018, and officially started on 1 November 2018. A satellite navigation system independent of GPS is planned for 2023 with seven satellites. In May 2023 it was announced that the system would expand to eleven satellites.

<span class="mw-page-title-main">Adtran</span>

Adtran, Inc. is an American fiber networking and telecommunications company headquartered in Huntsville, Alabama. It is a vendor of networking solutions that address a range of applications. Its customers include communications service providers, governments, enterprises and utilities.

An atomic fountain measures an atomic hyperfine transition by letting a cloud of laser-cooled atoms fall through an interaction region under the influence of gravity. The atomic cloud is cooled and pushed upwards by a counter-propagating lasers in an optical molasses configuration. The atomic transition is measured precisely with coherent microwaves while the atoms pass through the interaction region. The measured transition can be used in an atomic clock measurement to high precision.

<span class="mw-page-title-main">Atomic clock</span> Clock that monitors the resonant frequency of atoms

An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions between such states they interact with a very specific frequency of electromagnetic radiation. This phenomenon serves as the basis for the International System of Units' (SI) definition of a second:

The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency, , the unperturbed ground-state hyperfine transition frequency of the caesium-133 atom, to be 9192631770 when expressed in the unit Hz, which is equal to s−1.

Leonard Cutler (1928–2006), also known as Leonard S. Cutler, was a pioneer and authority on ultra-precise timekeeping devices and standards, and was well known for his work with quantum-mechanical effects. He was the co-inventor of the HP5060A Cesium Beam Clock, its successor the HP 5071A, and the two-frequency laser inferometer. He has also been praised for his crucial contributions to the design of the Allen Telescope Array.

Symmetricom, Inc. develops, manufactures, and supplies timekeeping technology to customers in industry and government worldwide that require extremely precise synchronization. Symmetricom products supported precise timing standards, including GPS-based timing, IEEE 1588 (PTP), Network Time Protocol (NTP), Synchronous Ethernet and Data Over Cable Service Interface Specifications (DOCSIS®) timing.

References

  1. "Nokia: Technik aus Bayern hält 5G-Netze durchgängig synchron - Golem.de". www.golem.de (in German). Retrieved 2019-07-02.
  2. "Nokia: Technik aus Bayern hält 5G-Netze durchgängig synchron - Golem.de". www.golem.de (in German). Retrieved 2019-07-02.