This article needs additional citations for verification .(December 2010) |
Out of autoclave composite manufacturing is an alternative to the traditional high pressure autoclave (industrial) curing process commonly used by the aerospace manufacturers for manufacturing composite material. Out of autoclave (OOA) is a process that achieves the same quality as an autoclave but through a different process. [1] OOA curing achieves the desired fiber content and elimination of voids by placing the layup within a closed mold and applying vacuum, pressure, and heat by means other than an autoclave. An RTM press is the typical method of applying heat and pressure to the closed mold. There are several out of autoclave technologies in current use including resin transfer molding (RTM), Same Qualified Resin Transfer Molding (SQRTM), vacuum-assisted resin transfer molding (VARTM), and balanced pressure fluid molding. The most advanced of these processes can produce high-tech net shape aircraft components.
Resin transfer molding (RTM) is a method of fabricating high-tech composite structures. The RTM process is capable of consistently producing composite parts with high strength, complex geometries, tight dimensional tolerances, and part quality typically required of aerospace applications. RTM uses a closed mold commonly made of aluminum. A fiber "layup" such as graphite is placed into the mold. The mold is closed, sealed, heated, and placed under vacuum. Heated resin is injected into the mold to impregnate the fiber layup. Having the mold heated and under vacuum, as in Vacuum Assisted Resin Transfer Molding (VARTM) assists the resin flow. The mold is then held at a temperature sufficient to cure the resin. Current RTM technology produces lightweight parts with excellent mechanical properties. With these qualities, composite materials are gaining wide use in a variety of structural and non-structural applications common in aerospace and aviation. RTM is one method of fabricating these composite structures. [1] [2]
Same Qualified Resin Transfer Molding (SQRTM) is a closed mold composites manufacturing method similar to RTM (Resin Transfer Molding). "Same Qualified" refers to this method injecting the same resin as that used in the prepreg layup. The attributes of "same qualified" are significant to a manufacturer because those who adopt this process need not re-qualify resin materials for their production process. What sets SQRTM apart from standard resin transfer molding is the substitution of a prepreg layup rather than a dry fiber preform. [3]
SQRTM is an RTM process adapted to prepreg technology. The prepreg is placed in a closed mold and during the cure cycle, a small amount of resin is injected into the cavity through ports positioned around the part. This resin does not go into the laminate, but only presses up against the edge of the laminate in order to establish hydrostatic pressure on the prepreg, similar to the goal of autoclave curing. This pressure is similar to the autoclave, on the order of 6-7 bars (90-100 psi). Hydrostatic pressure minimizes voids by keeping dissolved air, water and resin monomers in solution in the resin. The tool can either be self-clamped and self-heated or heated and clamped by a press. The equipment is composed of a tool, a press, an injector, and a vacuum pump. [4]
The key factors in the SQRTM process include precision machined closed mold tooling, high pressure presses, a high vacuum applied to the tool interior, and precise control of heating platens, injected resin volume, heat, and pressure.[ citation needed ]
The advantages of the SQRTM process include a high level of integration, tight tolerances and the use of qualified prepregs. Its disadvantages include higher tool costs and a lower level of flexibility to design changes. [5]
Vacuum assisted resin transfer molding (VARTM) differs from pre-preg processing in that fiber reinforcements and core materials are laid up on a one-sided mold and vacuum bagged. Liquid resin is introduced through ports in the mold and vacuum-drawn through the reinforcements by way of designed-in channels and infusion media that facilitate fiber wetout. Subsequent curing does not require high heat or high pressure, unlike the autoclave. The process's comparatively low-cost tooling allows inexpensive production of large, complex parts in one shot, [1] such as the tail of the Mitsubishi SpaceJet. [6]
Balanced pressure molding using fluid as the heat transfer is commercially practiced as the 'quickstep' process. This process allows for the curing, partial curing, and joining of composite materials. The process involves a fluid-filled, pressure balanced, heated floating mould technology. The heated floating mold technology used within the process works by rapidly applying heat to the laminate which is trapped between a free floating rigid or semi-rigid mold that floats in, and is surrounded by, a heat transfer fluid (HTF). The rapid heating can lead to significantly lower resin viscosities, and this in turn allows achieving full laminate consolidation using pressures lower than those used in autoclave. The mold and laminate become separated from the circulating HTF by a flexible membrane. The part, typically under full vacuum, is subject to pressures as high as 250kPa fluid pressure and can be rapidly heated to the desired cure temperature without risk of catastrophic exothermic reaction, as the HTF can draw excess heat as desired. The air is then removed under vacuum and the laminate is compacted and heated until the part is cured.
A flexible membrane beneath the mold is bonded into a pressure chamber creating the lower half of a 'clamshell' or 'chamber' like mold set. A second flexible membrane is bonded to a second pressure chamber creating the upper half of the clamshell. These pressure chambers are clamped together during processing, permitting the laminate to be compressed while reducing stress to the mold as it is floating in a balanced pressure environment within the HTF.
The process can use thermosetting, thermoplastic prepregs (pre-impregnated composite fibers), and wet resin with dry fiber to produce superior composite parts. This out of autoclave process can achieve aerospace grade void contents of less than 2%, with extremely fast cycle times, and at significantly lower pressures and lower labor costs than many alternative autoclave production systems using many typical autoclave qualified prepregs. The quickstep out of autoclave system is unique in that it uses fully immersed balanced pressure fluid curing and it allows the user to stop the composite cure reaction at any point in the cure cycle, and thus can halt processing on all or part of the laminate and either return to it at a later to complete cure or to co-cure, join and bond other composites to it to create larger parts.
The use of fluid to control temperature, as opposed to the gas generally used within methods such as autoclave and oven curing equates to lower energy consumption, faster cycle times and extremely accurate part temperature control.
Another out of autoclave method for achieving external compression on prepreg based composite parts is through the use of heat shrink tape. This method, however, does not achieve the high quality of RTM or autoclave processes because without the autoclave or a closed mold, the part must be cured in a non-pressurized oven. These compression tapes are typically made from polyester (PET) film. Heat shrink tape is applied to a composite part prior to the heating, or curing cycle. When heated, the tape will shrink in the linear (machine direction). Heat shrink tape works best on parts that are cylindrical or semi-circular in cross section, as this allows the tape to exert even compaction forces on the part surface. Examples would be composite tubes for aerospace, wind energy, consumer sporting goods, etc. Heat shrink tape allows these parts to be processed without the need to cure with the heat and pressure of an autoclave.
In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.
Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.
Pre-preg is a composite material made from "pre-impregnated" fibers and a partially cured polymer matrix, such as epoxy or phenolic resin, or even thermoplastic mixed with liquid rubbers or resins. The fibers often take the form of a weave and the matrix is used to bond them together and to other components during manufacture. The thermoset matrix is only partially cured to allow easy handling; this B-Stage material requires cold storage to prevent complete curing. B-Stage pre-preg is always stored in cooled areas since heat accelerates complete polymerization. Hence, composite structures built of pre-pregs will mostly require an oven or autoclave to cure. The main idea behind a pre-preg material is the use of anisotropic mechanical properties along the fibers, while the polymer matrix provides filling properties, keeping the fibers in a single system.
Compression molding is a method of molding in which the molding material, generally preheated, is first placed in an open, heated mold cavity. The mold is closed with a top force or plug member, pressure is applied to force the material into contact with all mold areas, while heat and pressure are maintained until the molding material has cured; this process is known as compression molding method and in case of rubber it is also known as 'Vulcanisation'. The process employs thermosetting resins in a partially cured stage, either in the form of granules, putty-like masses, or preforms.
Micarta is a brand name for composites of linen, canvas, paper, fiberglass, carbon fiber, or other fabric in a thermosetting plastic. It was originally used in electrical and decorative applications. Micarta was developed by George Westinghouse at least as early as 1910 using phenolic resins invented by Leo Baekeland. These resins were used to impregnate paper and cotton fabric which were cured under pressure and high temperature to produce laminates. In later years this manufacturing method included the use of fiberglass fabric, and other resin types were also used. Today Micarta high-pressure industrial laminates are produced with a wide variety of resins and fibers. The term has been used generically for most resin impregnated fiber compounds. Common uses of modern high-pressure laminates include electrical insulators, printed circuit board substrates, and knife handles.
Filament winding is a fabrication technique mainly used for manufacturing open (cylinders) or closed end structures. This process involves winding filaments under tension over a rotating mandrel. The mandrel rotates around the spindle while a delivery eye on a carriage traverses horizontally in line with the axis of the rotating mandrel, laying down fibers in the desired pattern or angle to the rotational axis. The most common filaments are glass or carbon and are impregnated with resin by passing through a bath as they are wound onto the mandrel. Once the mandrel is completely covered to the desired thickness, the resin is cured. Depending on the resin system and its cure characteristics, often the mandrel is autoclaved or heated in an oven or rotated under radiant heaters until the part is cured. Once the resin has cured, the mandrel is removed or extracted, leaving the hollow final product. For some products such as gas bottles, the 'mandrel' is a permanent part of the finished product forming a liner to prevent gas leakage or as a barrier to protect the composite from the fluid to be stored.
Electronic packaging is the design and production of enclosures for electronic devices ranging from individual semiconductor devices up to complete systems such as a mainframe computer. Packaging of an electronic system must consider protection from mechanical damage, cooling, radio frequency noise emission and electrostatic discharge. Product safety standards may dictate particular features of a consumer product, for example, external case temperature or grounding of exposed metal parts. Prototypes and industrial equipment made in small quantities may use standardized commercially available enclosures such as card cages or prefabricated boxes. Mass-market consumer devices may have highly specialized packaging to increase consumer appeal. Electronic packaging is a major discipline within the field of mechanical engineering.
A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the Space Shuttle.
Carbon fiber-reinforced polymers, carbon-fibre-reinforced polymers, carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic, also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.
Vacuum bag moulding is the primary composite manufacturing process for producing laminated structures. It is common in the aerospace industry.
Three-dimensional composites use fiber preforms constructed from yarns or tows arranged into complex three-dimensional structures. These can be created from a 3D weaving process, a 3D knitting process, a 3D braiding process, or a 3D lay of short fibers. A resin is applied to the 3D preform to create the composite material. Three-dimensional composites are used in highly engineered and highly technical applications in order to achieve complex mechanical properties. Three-dimensional composites are engineered to react to stresses and strains in ways that are not possible with traditional composite materials composed of single direction tows, or 2D woven composites, sandwich composites or stacked laminate materials.
Tailored fiber placement (TFP) is a textile manufacturing technique based on the principle of sewing for a continuous placement of fibrous material for composite components. The fibrous material is fixed with an upper and lower stitching thread on a base material. Compared to other textile manufacturing processes fiber material can be placed near net-shape in curvilinear patterns upon a base material in order to create stress adapted composite parts.
Automated fiber placement (AFP), also known as advanced fiber placement, is an advanced method of manufacturing composite materials. These materials, which offer lighter weight with equivalent or greater strength than metals, are increasingly used in airframes and other industrial products.
Vacuum Assisted Resin Transfer Molding (VARTM) or Vacuum Injected Molding (VIM) is a closed mold, out of autoclave (OOA) composite manufacturing process. VARTM is a variation of Resin Transfer Molding (RTM) with its distinguishing characteristic being the replacement of the top portion of a mold tool with a vacuum bag and the use of a vacuum to assist in resin flow. The process involves the use of a vacuum to facilitate resin flow into a fiber layup contained within a mold tool covered by a vacuum bag. After the impregnation occurs the composite part is allowed to cure at room temperature with an optional post cure sometimes carried out.
A void or a pore is three-dimensional region that remains unfilled with polymer and fibers in a composite material. Voids are typically the result of poor manufacturing of the material and are generally deemed undesirable. Voids can affect the mechanical properties and lifespan of the composite. They degrade mainly the matrix-dominated properties such as interlaminar shear strength, longitudinal compressive strength, and transverse tensile strength. Voids can act as crack initiation sites as well as allow moisture to penetrate the composite and contribute to the anisotropy of the composite. For aerospace applications, a void content of approximately 1% is still acceptable, while for less sensitive applications, the allowance limit is 3-5%. Although a small increase in void content may not seem to cause significant issues, a 1-3% increase in void content of carbon fiber reinforced composite can reduce the mechanical properties by up to 20%
Transfer molding is a manufacturing process in which casting material is forced into a mold. Transfer molding is different from compression molding in that the mold is enclosed rather than open to the fill plunger resulting in higher dimensional tolerances and less environmental impact. Compared to injection molding, transfer molding uses higher pressures to uniformly fill the mold cavity. This allows thicker reinforcing fiber matrices to be more completely saturated by resin. Furthermore, unlike injection molding, the transfer mold casting material may start the process as a solid. This can reduce equipment costs and time dependency. The transfer process may have a slower fill rate than an equivalent injection molding process.
A Lay-Up process is a moulding process for composite materials, in which the final product is obtained by overlapping a specific number of different layers, usually made of continuous polymeric or ceramic fibres and a thermoset polymeric liquid matrix. It can be divided into Dry Lay-up and Wet Lay-Up, depending on whether the layers are pre-impregnated or not. Dry Lay-up is a common process in the aerospace industry, due to the possibility of obtaining complex shapes with good mechanical properties, characteristics required in this field. On the contrary, as Wet Lay-Up does not allow uni-directional fabrics, which have better mechanical properties, it is mainly adopted for all other areas, which in general have lower requirements in terms of performance.
Autoclave moulding is an advanced composite manufacturing process.
Resin transfer moulding (RTM) is a process for producing high performance composite components.
Light resin transfer moulding (Light RTM) is a process by which products of Composite materials are manufactured using a closed mold system.