Overcategorization, overcategorisation or category clutter is the process of assigning too many categories, classes or index terms to a given document. It is related to the Library and Information Science (LIS) concepts of document classification and subject indexing.
In LIS, the ideal number of terms that should be assigned to classify an item are measured by the variables precision and recall. Assigning few category labels that are most closely related to the content of the item being classified will result in searches that have high precision, I.e., where a high proportion of the results are closely related to the query. Assigning more category labels to each item will reduce the precision of each search, but increase the recall, retrieving more relevant results. Related LIS concepts include exhaustivity of indexing and information overload.
If too many categories are assigned to a given document, the implications for users depend on how informative the links are. If the user is able to distinguish between useful and not useful links, the damage is limited: The user only wastes time selecting links. In many cases, however, the user cannot judge whether or not a given link will turn out to be fruitful. In that case he or she has to follow the link and to read or skim another document. The worst case scenario is, of course, that even after reading the new document the user is unable to decide whether or not it might be useful if its subject matter is not thoroughly investigated.
Overcategorization also has another unpleasant implication: It makes the system (for example in Wikipedia) difficult to maintain in a consistent way. If the system is inconsistent, it means that when the user considers the links in a given category, he or she will not find all documents relevant to that category.
Basically, the problem of overcategorization should be understood from the perspective of relevance and the traditional measures of recall and precision. If too few relevant categories are assigned to a document, recall may decrease. If too many non-relevant categories are assigned, precision becomes lower. The hard job is to say which categories are fruitful or relevant for future use of the document.
Information retrieval (IR) in computing and information science is the task of identifying and retrieving information system resources that are relevant to an information need. The information need can be specified in the form of a search query. In the case of document retrieval, queries can be based on full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds.
In computing, a search engine is an information retrieval software system designed to help find information stored on one or more computer systems. Search engines discover, crawl, transform, and store information for retrieval and presentation in response to user queries. The search results are usually presented in a list and are commonly called hits. The most widely used type of search engine is a web search engine, which searches for information on the World Wide Web.
This page is a glossary of library and information science.
In information science and information retrieval, relevance denotes how well a retrieved document or set of documents meets the information need of the user. Relevance may include concerns such as timeliness, authority or novelty of the result.
Relevance is the concept of one topic being connected to another topic in a way that makes it useful to consider the second topic when considering the first. The concept of relevance is studied in many different fields, including cognitive sciences, logic, and library and information science. Most fundamentally, however, it is studied in epistemology. Different theories of knowledge have different implications for what is considered relevant and these fundamental views have implications for all other fields as well.
Automatic summarization is the process of shortening a set of data computationally, to create a subset that represents the most important or relevant information within the original content. Artificial intelligence algorithms are commonly developed and employed to achieve this, specialized for different types of data.
In text retrieval, full-text search refers to techniques for searching a single computer-stored document or a collection in a full-text database. Full-text search is distinguished from searches based on metadata or on parts of the original texts represented in databases.
Document classification or document categorization is a problem in library science, information science and computer science. The task is to assign a document to one or more classes or categories. This may be done "manually" or algorithmically. The intellectual classification of documents has mostly been the province of library science, while the algorithmic classification of documents is mainly in information science and computer science. The problems are overlapping, however, and there is therefore interdisciplinary research on document classification.
Controlled vocabularies provide a way to organize knowledge for subsequent retrieval. They are used in subject indexing schemes, subject headings, thesauri, taxonomies and other knowledge organization systems. Controlled vocabulary schemes mandate the use of predefined, preferred terms that have been preselected by the designers of the schemes, in contrast to natural language vocabularies, which have no such restriction.
Relevance feedback is a feature of some information retrieval systems. The idea behind relevance feedback is to take the results that are initially returned from a given query, to gather user feedback, and to use information about whether or not those results are relevant to perform a new query. We can usefully distinguish between three types of feedback: explicit feedback, implicit feedback, and blind or "pseudo" feedback.
Query expansion (QE) is the process of reformulating a given query to improve retrieval performance in information retrieval operations, particularly in the context of query understanding. In the context of search engines, query expansion involves evaluating a user's input and expanding the search query to match additional documents. Query expansion involves techniques such as:
Knowledge organization (KO), organization of knowledge, organization of information, or information organization is an intellectual discipline concerned with activities such as document description, indexing, and classification that serve to provide systems of representation and order for knowledge and information objects. According to The Organization of Information by Joudrey and Taylor, information organization:
examines the activities carried out and tools used by people who work in places that accumulate information resources for the use of humankind, both immediately and for posterity. It discusses the processes that are in place to make resources findable, whether someone is searching for a single known item or is browsing through hundreds of resources just hoping to discover something useful. Information organization supports a myriad of information-seeking scenarios.
Subject indexing is the act of describing or classifying a document by index terms, keywords, or other symbols in order to indicate what different documents are about, to summarize their contents or to increase findability. In other words, it is about identifying and describing the subject of documents. Indexes are constructed, separately, on three distinct levels: terms in a document such as a book; objects in a collection such as a library; and documents within a field of knowledge.
In pattern recognition, information retrieval, object detection and classification, precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space.
Card sorting is a technique in user experience design in which a person tests a group of subject experts or users to generate a dendrogram or folksonomy. It is a useful approach for designing information architecture, workflows, menu structure, or web site navigation paths.
A concept search is an automated information retrieval method that is used to search electronically stored unstructured text for information that is conceptually similar to the information provided in a search query. In other words, the ideas expressed in the information retrieved in response to a concept search query are relevant to the ideas contained in the text of the query.
Ranking of query is one of the fundamental problems in information retrieval (IR), the scientific/engineering discipline behind search engines. Given a query q and a collection D of documents that match the query, the problem is to rank, that is, sort, the documents in D according to some criterion so that the "best" results appear early in the result list displayed to the user. Ranking in terms of information retrieval is an important concept in computer science and is used in many different applications such as search engine queries and recommender systems. A majority of search engines use ranking algorithms to provide users with accurate and relevant results.
In computer science, Universal IR Evaluation aims to develop measures of database retrieval performance that shall be comparable across all information retrieval tasks.
In library and information science documents are classified and searched by subject – as well as by other attributes such as author, genre and document type. This makes "subject" a fundamental term in this field. Library and information specialists assign subject labels to documents to make them findable. There are many ways to do this and in general there is not always consensus about which subject should be assigned to a given document. To optimize subject indexing and searching, we need to have a deeper understanding of what a subject is. The question: "what is to be understood by the statement 'document A belongs to subject category X'?" has been debated in the field for more than 100 years
Evaluation measures for an information retrieval (IR) system assess how well an index, search engine, or database returns results from a collection of resources that satisfy a user's query. They are therefore fundamental to the success of information systems and digital platforms.