Overlap (term rewriting)

Last updated

In mathematics, computer science and logic, overlap, as a property of the reduction rules in term rewriting system, describes a situation where a number of different reduction rules specify potentially contradictory ways of reducing a reducible expression, also known as a redex, within a term. [1]

More precisely, if a number of different reduction rules share function symbols on the left-hand side, overlap can occur. Often we do not consider trivial overlap with a redex and itself.

Examples

Consider the term rewriting system defined by the following reduction rules:

The term can be reduced via ρ1 to yield y, but it can also be reduced via ρ2 to yield . Note how the redex is contained in the redex . The result of reducing different redexes is described in a what is known as a critical pair; the critical pair arising out of this term rewriting system is .

Overlap may occur with fewer than two reduction rules.

Consider the term rewriting system defined by the following reduction rule:

The term has overlapping redexes, which can be either applied to the innermost occurrence or to the outermost occurrence of the term.

Related Research Articles

Lambda calculus is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics.

Lie algebra representation

In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.

In mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a formula with other terms. Such methods may be achieved by rewriting systems. In their most basic form, they consist of a set of objects, plus relations on how to transform those objects.

A formula of the predicate calculus is in prenex normal form (PNF) if it is rewritten as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix. Together with the normal forms in propositional logic, it provides a canonical normal form useful in automated theorem proving.

The Knuth–Bendix completion algorithm is a semi-decision algorithm for transforming a set of equations into a confluent term rewriting system. When the algorithm succeeds, it effectively solves the word problem for the specified algebra.

In linear algebra and functional analysis, the partial trace is a generalization of the trace. Whereas the trace is a scalar valued function on operators, the partial trace is an operator-valued function. The partial trace has applications in quantum information and decoherence which is relevant for quantum measurement and thereby to the decoherent approaches to interpretations of quantum mechanics, including consistent histories and the relative state interpretation.

In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet.

In the lambda calculus, a term is in beta normal form if no beta reduction is possible. A term is in beta-eta normal form if neither a beta reduction nor an eta reduction is possible. A term is in head normal form if there is no beta-redex in head position.

In theoretical computer science and mathematical logic a string rewriting system (SRS), historically called a semi-Thue system, is a rewriting system over strings from a alphabet. Given a binary relation between fixed strings over the alphabet, called rewrite rules, denoted by , an SRS extends the rewriting relation to all strings in which the left- and right-hand side of the rules appear as substrings, that is , where , , , and are strings.

Confluence (abstract rewriting)

In computer science, confluence is a property of rewriting systems, describing which terms in such a system can be rewritten in more than one way, to yield the same result. This article describes the properties in the most abstract setting of an abstract rewriting system.

In statistics, M-estimators are a broad class of extremum estimators for which the objective function is a sample average. Both non-linear least squares and maximum likelihood estimation are special cases of M-estimators. The definition of M-estimators was motivated by robust statistics, which contributed new types of M-estimators. The statistical procedure of evaluating an M-estimator on a data set is called M-estimation. 48 samples of robust M-estimators can be found in a recent review study.

In abstract rewriting, an object is in normal form if it cannot be rewritten any further, i.e. it is irreducible. Depending on the rewriting system, an object may rewrite to several normal forms or none at all. Many properties of rewriting systems relate to normal forms.

Orthogonality as a property of term rewriting systems (TRSs) describes where the reduction rules of the system are all left-linear, that is each variable occurs only once on the left hand side of each reduction rule, and there is no overlap between them, i.e. the TRS has no critical pairs. For example is not left-linear.

Interaction nets are a graphical model of computation devised by Yves Lafont in 1990 as a generalisation of the proof structures of linear logic. An interaction net system is specified by a set of agent types and a set of interaction rules. Interaction nets are an inherently distributed model of computation in the sense that computations can take place simultaneously in many parts of an interaction net, and no synchronisation is needed. The latter is guaranteed by the strong confluence property of reduction in this model of computation. Thus interaction nets provide a natural language for massive parallelism. Interaction nets are at the heart of many implementations of the lambda calculus, such as efficient closed reduction and optimal, in Lévy's sense, Lambdascope.

In mathematical logic and theoretical computer science, an abstract rewriting system is a formalism that captures the quintessential notion and properties of rewriting systems. In its simplest form, an ARS is simply a set together with a binary relation, traditionally denoted with ; this definition can be further refined if we index (label) subsets of the binary relation. Despite its simplicity, an ARS is sufficient to describe important properties of rewriting systems like normal forms, termination, and various notions of confluence.

Membrane systems have been inspired from the structure and the functioning of the living cells. They were introduced and studied by Gh.Paun under the name of P systems [24]; some applications of the membrane systems are presented in [15]. Membrane systems are essentially models of distributed, parallel and nondeterministic systems. Here we motivate and present the mobile membranes. Mobile membranes represent a variant of membrane systems inspired by the biological movements given by endocytosis and exocytosis. They have the expressive power of both P systems and process calculi with mobility such as mobile ambients [11] and brane calculi [10]. Computations with mobile membranes can be defined over specific configurations, while they represent also a rule-based formalism.

Critical pair (term rewriting)

A critical pair arises in a term rewriting system when two rewrite rules overlap to yield two different terms. In more detail, is a critical pair if there is a term t for which two different applications of a rewrite rule yield the terms t1 and t2.

In rewriting, a reduction strategy or rewriting strategy is a relation specifying a rewrite for each object or term, compatible with a given reduction relation. Some authors use the term to refer to an evaluation strategy.

Causal fermion systems Candidate unified theory of physics

The theory of causal fermion systems is an approach to describe fundamental physics. It provides a unification of the weak, the strong and the electromagnetic forces with gravity at the level of classical field theory. Moreover, it gives quantum mechanics as a limiting case and has revealed close connections to quantum field theory. Therefore, it is a candidate for a unified physical theory. Instead of introducing physical objects on a preexisting spacetime manifold, the general concept is to derive spacetime as well as all the objects therein as secondary objects from the structures of an underlying causal fermion system. This concept also makes it possible to generalize notions of differential geometry to the non-smooth setting. In particular, one can describe situations when spacetime no longer has a manifold structure on the microscopic scale. As a result, the theory of causal fermion systems is a proposal for quantum geometry and an approach to quantum gravity.

Lambda calculus is a formal mathematical system based on lambda abstraction and function application. Two definitions of the language are given here: a standard definition, and a definition using mathematical formulas.

References

  1. Marc Bezem; Jan Willem Klop; Roel de Vrijer (2003). Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science. Cambridge, UK: Cambridge University Press. p. 48. ISBN   0-521-39115-6.