Overlapping interval topology

Last updated

In mathematics, the overlapping interval topology is a topology which is used to illustrate various topological principles.

Contents

Definition

Given the closed interval of the real number line, the open sets of the topology are generated from the half-open intervals and with . The topology therefore consists of intervals of the form , , and with , together with itself and the empty set.

Properties

Any two distinct points in are topologically distinguishable under the overlapping interval topology as one can always find an open set containing one but not the other point. However, every non-empty open set contains the point 0 which can therefore not be separated from any other point in , making with the overlapping interval topology an example of a T0 space that is not a T1 space.

The overlapping interval topology is second countable, with a countable basis being given by the intervals , and with and r and s rational.

See also

Related Research Articles

Compact space Topological notions of all points being "close"

In mathematics, more specifically in general topology, compactness is a property that generalizes the notion of a subset of Euclidean space being closed and bounded. Examples include a closed interval, a rectangle, or a finite set of points. This notion is defined for more general topological spaces than Euclidean space in various ways.

Connected space Topological space that is connected

In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces.

In mathematical analysis, a metric space M is called complete if every Cauchy sequence of points in M has a limit that is also in M or, alternatively, if every Cauchy sequence in M converges in M.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

Open set Basic subset of a topological space

In mathematics, particularly in topology, an open set is an abstract concept generalizing the idea of an open interval in the real line. The simplest example is in metric spaces, where open sets can be defined as those sets which contain a ball around each of their points ; however, an open set, in general, can be very abstract: any collection of sets can be called open, as long as the union of an arbitrary number of open sets in the collection is open, the intersection of a finite number of open sets is open, and the space itself is open. These conditions are very loose, and they allow enormous flexibility in the choice of open sets. In the two extremes, every set can be open, or no set can be open but the space itself and the empty set.

In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space.

In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a discontinuous sequence, meaning they are isolated from each other in a certain sense. The discrete topology is the finest topology that can be given on a set, i.e., it defines all subsets as open sets. In particular, each singleton is an open set in the discrete topology.

In mathematics, a base of a topology on a set X is a collection of subsets of X such that every finite intersection of elements of is a union of elements of . A base defines a topology on X that has, as open sets, all unions of elements of .

General topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology.

In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets.

Hilbert cube infinite-dimensional cube with a compact topology

In mathematics, the Hilbert cube, named after David Hilbert, is a topological space that provides an instructive example of some ideas in topology. Furthermore, many interesting topological spaces can be embedded in the Hilbert cube; that is, can be viewed as subspaces of the Hilbert cube.

In the mathematical field of topology, a Gδ set is a subset of a topological space that is a countable intersection of open sets. The notation originated in Germany with G for Gebiet meaning open set in this case and δ for Durchschnitt. The term inner limiting set is also used. Gδ sets, and their dual, Fσ sets, are the second level of the Borel hierarchy.

In mathematics, the lower limit topology or right half-open interval topology is a topology defined on the set of real numbers; it is different from the standard topology on and has a number of interesting properties. It is the topology generated by the basis of all half-open intervals [a,b), where a and b are real numbers.

In topology, the long line is a topological space somewhat similar to the real line, but in a certain way "longer". It behaves locally just like the real line, but has different large-scale properties. Therefore, it serves as one of the basic counterexamples of topology. Intuitively, the usual real-number line consists of a countable number of line segments [0, 1) laid end-to-end, whereas the long line is constructed from an uncountable number of such segments.

In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space is second-countable if there exists some countable collection of open subsets of such that any open subset of can be written as a union of elements of some subfamily of . A second-countable space is said to satisfy the second axiom of countability. Like other countability axioms, the property of being second-countable restricts the number of open sets that a space can have.

In mathematics, more specifically in point-set topology, the derived set of a subset S of a topological space is the set of all limit points of S. It is usually denoted by S '.

In topology, a branch of mathematics, a topological manifold is a topological space which locally resembles real n-dimensional space in a sense defined below. Topological manifolds form an important class of topological spaces with applications throughout mathematics. All manifolds are topological manifolds by definition, but many manifolds may be equipped with additional structure. Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" any additional structure the manifold has.

In mathematics, the particular point topology is a topology where a set is open if it contains a particular point of the topological space. Formally, let X be any set and pX. The collection

In topology and related areas of mathematics, a subset A of a topological space X is called dense if every point x in X either belongs to A or is a limit point of A; that is, the closure of A is constituting the whole set X. Informally, for every point in X, the point is either in A or arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it.

References