PBLU

Last updated

A map of pBLU PBLU plasmid map.jpg
A map of pBLU

pBLU is a commercially produced bacterial plasmid that contains genes for ampicillin resistance (beta lactamase and beta galactosidase). It is often used in conjunction with an ampicillin-susceptible E. coli strain to teach students about transformation of eubacteria. [1] It is 5,437 base pairs long. There is a multiple cloning site in the lacZ gene.

Related Research Articles

Ampicillin Antibiotic

Ampicillin is an antibiotic used to prevent and treat a number of bacterial infections, such as respiratory tract infections, urinary tract infections, meningitis, salmonellosis, and endocarditis. It may also be used to prevent group B streptococcal infection in newborns. It is used by mouth, by injection into a muscle, or intravenously. Like all antibiotics, it is not useful for the treatment of viral infections.

Beta-lactamase class of enzymes

Beta-lactamases are enzymes produced by bacteria that provide multi-resistance to β-lactam antibiotics such as penicillins, cephalosporins, cephamycins, and carbapenems (ertapenem), although carbapenems are relatively resistant to beta-lactamase. Beta-lactamase provides antibiotic resistance by breaking the antibiotics' structure. These antibiotics all have a common element in their molecular structure: a four-atom ring known as a β-lactam. Through hydrolysis, the enzyme lactamase breaks the β-lactam ring open, deactivating the molecule's antibacterial properties.

Gram-negative bacteria group of bacteria that do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation

Gram-negative bacteria are bacteria that do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation. They are characterized by their cell envelopes, which are composed of a thin peptidoglycan cell wall sandwiched between an inner cytoplasmic cell membrane and a bacterial outer membrane.

Transformation (genetics) genetic alteration of a cell by uptake of genetic material from the environment

In molecular biology, transformation is the genetic alteration of a cell resulting from the direct uptake and incorporation of exogenous genetic material from its surroundings through the cell membrane(s). For transformation to take place, the recipient bacteria must be in a state of competence, which might occur in nature as a time-limited response to environmental conditions such as starvation and cell density, and may also be induced in a laboratory.

pGLO

The pGLO plasmid is an engineered plasmid used in biotechnology as a vector for creating genetically modified organisms. The plasmid contains several reporter genes, most notably the green fluorescent protein (GFP) and the ampicillin resistance gene. GFP was isolated from the jelly fish Aequorea victoria. Because it shares a bidirectional promoter with a gene for metabolizing arabinose, the GFP gene is expressed in the presence of arabinose, which makes the transgenic organism express its fluorescence under UV light. GFP can be induced in bacteria containing the pGLO plasmid by growing them on +arabinose plates. pGLO is made by Bio-Rad Laboratories.

Subcloning

In molecular biology, subcloning is a technique used to move a particular DNA sequence from a parent vector to a destination vector.

<i>Moraxella catarrhalis</i> Species of bacterium

Moraxella catarrhalis is a fastidious, nonmotile, Gram-negative, aerobic, oxidase-positive diplococcus that can cause infections of the respiratory system, middle ear, eye, central nervous system, and joints of humans. It causes the infection of the host cell by sticking to the host cell using trimeric autotransporter adhesins.

Ticarcillin chemical compound

Ticarcillin is a carboxypenicillin. It is almost always sold and used in combination with clavulanate as ticarcillin/clavulanic acid. Because it is a penicillin, it also falls within the larger class of beta-lactam antibiotics. Its main clinical use is as an injectable antibiotic for the treatment of Gram-negative bacteria, particularly Pseudomonas aeruginosa. It is also one of the few antibiotics capable of treating Stenotrophomonas maltophilia infections.

Hetacillin chemical compound

Hetacillin is a beta-lactam antibiotic that is part of the aminopenicillin family. It is a prodrug and it has no antibacterial activity itself, but quickly splits of acetone in the human body to form ampicillin, which is active against a variety of bacteria.

Ampicillin/sulbactam is a combination of the common penicillin-derived antibiotic ampicillin and sulbactam, an inhibitor of bacterial beta-lactamase. Two different forms of the drug exist. The first, developed in 1987 and marketed in the United States under the tradename Unasyn, generic only outside the United States, is an intravenous antibiotic. The second, an oral form called sultamicillin, is marketed under the trade name Ampictam outside the United States. And generic only in the United States, ampicillin/sulbactam is used to treat infections caused by bacteria resistant to beta-lactam antibiotics. Sulbactam blocks the enzyme which breaks down ampicillin and thereby allows ampicillin to attack and kill the bacteria.

Sultamicillin chemical compound

Sultamicillin, sold under the brand name Unasyn among others, is an oral form of the antibiotic combination ampicillin/sulbactam. It contains esterified ampicillin and sulbactam.

A selectable marker is a gene introduced into a cell, especially a bacterium or to cells in culture, that confers a trait suitable for artificial selection. They are a type of reporter gene used in laboratory microbiology, molecular biology, and genetic engineering to indicate the success of a transfection or other procedure meant to introduce foreign DNA into a cell. Selectable markers are often antibiotic resistance genes. Bacteria that have been subjected to a procedure to introduce foreign DNA are grown on a medium containing an antibiotic, and those bacterial colonies that can grow have successfully taken up and expressed the introduced genetic material. Normally the genes encoding resistance to antibiotics such as ampicillin, chloroamphenicol, tetracycline or kanamycin, etc., are considered useful selectable markers for E. coli.

Resistance transfer factor is an old name for a plasmid that codes for antibiotic resistance. R-factor was first demonstrated in Shigella in 1959 by Japanese scientists. Often, R-factors code for more than one antibiotic resistance factor: genes that encode resistance to unrelated antibiotics may be carried on a single R-factor, sometimes up to 8 different resistances. Many R-factors can pass from one bacterium to another through bacterial conjugation and are a common means by which antibiotic resistance spreads between bacterial species, genera and even families. For example, RP1, a plasmid that encodes resistance to ampicillin, tetracycline and kanamycin originated in a species of Pseudomonas, from the family Pseudomonadaceae, but can also be maintained in bacteria belonging to the family Enterobacteriaceae, such as Escherichia coli.

pComb3H, a derivative of pComb3 optimized for expression of human fragments, is a phagemid used to express proteins such as zinc finger proteins and antibody fragments on phage pili for the purpose of phage display selection.

Galactosidases are enzymes that catalyze the hydrolysis of galactosides into monosaccharides.

Plant transformation vectors are plasmids that have been specifically designed to facilitate the generation of transgenic plants. The most commonly used plant transformation vectors are termed binary vectors because of their ability to replicate in both E. coli, a common lab bacterium, and Agrobacterium tumefaciens, a bacterium used to insert the recombinant (customized) DNA into plants. Plant Transformation vectors contain three key elements;

β-Lactamase inhibitor Endogenous substances and drugs that inhibit or block the activity of beta-lactamases

Beta-lactamases are a family of enzymes involved in bacterial resistance to beta-lactam antibiotics. They act by breaking the beta-lactam ring that allows penicillin-like antibiotics to work. Strategies for combating this form of resistance have included the development of new beta-lactam antibiotics that are more resistant to cleavage and the development of the class of enzyme inhibitors called beta-lactamase inhibitors. Although β-lactamase inhibitors have little antibiotic activity of their own, they prevent bacterial degradation of beta-lactam antibiotics and thus extend the range of bacteria the drugs are effective against.

<i>Cardiobacterium hominis</i> species of Gammaproteobacteria

Cardiobacterium hominis is a Gram-negative bacillus (rod-shaped) bacterium commonly grouped with other bacteria into the HACEK group. It is one of several bacteria that is normally present in the mouth and upper part of the respiratory tract such as nose and throat. However, it may also rarely cause endocarditis, an infection of the heart valves.

pUC19 Plasmid

pUC19 is one of a series of plasmid cloning vectors created by Joachim Messing and co-workers. The designation "pUC" is derived from the classical "p" prefix and the abbreviation for the University of California, where early work on the plasmid series had been conducted. It is a circular double stranded DNA and has 2686 base pairs. pUC19 is one of the most widely used vector molecules as the recombinants, or the cells into which foreign DNA has been introduced, can be easily distinguished from the non-recombinants based on color differences of colonies on growth media. pUC18 is similar to pUC19, but the MCS region is reversed.

Aminopenicillin pharmceutical drugs

The aminopenicillins are a group of antibiotics in the penicillin family that are structural analogs of ampicillin. Like other penicillins and beta-lactam antibiotics, they contain a beta-lactam ring that is crucial to its antibacterial activity.

References

  1. "BIOTECHNOLOGY: BACTERIAL TRANSFORMATION" (PDF). CollegeBoard. Retrieved 29 October 2017.