PTS Fructose-Mannitol Family

Last updated

The PTS Fructose-Mannitol (Fru) Family (TC# 4.A.2) is a large and complex family that is part of the PTS-GFL superfamily. It includes several sequenced fructose, mannose and mannitol-specific porters, as well as several putative PTS porters of unknown specificities. The fructose porters of this family phosphorylate fructose on the 1-position. Those of TC family 4.A.6 phosphorylate fructose on the 6-position.

Structure

The IIA, IIB and IIC domains of the fructose- and mannitol-specific porters are demonstrably homologous. The IIB and IIC domains of the fructose porters appear to be dissimilar from each other as those of the mannitol porters. The IIB and IIC domains of these porters are homologous to those of the Glc family. [1] However, the structure of the IIA domain of the mannitol porter of Escherichia coli has been determined, and it proved to possess an α2β2α3 secondary structure, a structure which is very different from the β-sandwich structure of IIAGlc. Further, the IIC domains of the mannitol and fructose porters are as dissimilar from each other as they are from the glucose or lactose families. As is true of other members of the PTS-GFL superfamily, the IIC domains of these permeases probably have a uniform 10 TMS topology. [2]

Related Research Articles

Mannose chemical compound

Mannose, packaged as the nutritional supplement "d-mannose", is a sugar monomer of the aldohexose series of carbohydrates. It is a C-2 epimer of glucose. Mannose is important in human metabolism, especially in the glycosylation of certain proteins. Several congenital disorders of glycosylation are associated with mutations in enzymes involved in mannose metabolism.

PEP group translocation, also known as the phosphotransferase system or PTS, is a distinct method used by bacteria for sugar uptake where the source of energy is from phosphoenolpyruvate (PEP). It is known to be a multicomponent system that always involves enzymes of the plasma membrane and those in the cytoplasm.

The Transporter Classification Database is an International Union of Biochemistry and Molecular Biology (IUBMB)-approved classification system for membrane transport proteins, including ion channels.

The sodium/phosphate cotransporter is a member of the phosphate:Na+ symporter (PNaS) family within the TOG Superfamily of transport proteins as specified in the Transporter Classification Database (TCDB).

Platelet membrane glycoproteins are surface glycoproteins found on platelets (thrombocytes) which play a key role in hemostasis. When the blood vessel wall is damaged, platelet membrane glycoproteins interact with the extracellular matrix.

P-type ATPase group of membrane proteins that catalyze cation uptake and/or efflux driven by ATP hydrolysis

The P-type ATPases, also known as E1-E2 ATPases, are a large group of evolutionarily related ion and lipid pumps that are found in bacteria, archaea, and eukaryotes. P-type ATPases are α-helical bundle primary transporters named based upon their ability to catalyze auto- (or self-) phosphorylation (hence P) of a key conserved aspartate residue within the pump and their energy source, adenosine triphosphate (ATP). In addition, they all appear to interconvert between at least two different conformations, denoted by E1 and E2. P-type ATPases fall under the P-type ATPase (P-ATPase) Superfamily (TC# 3.A.3) which, as of early 2016, includes 20 different protein families.

The Nucleobase:Cation Symporter-1 (NCS1) Family (TC# 2.A.39) consists of over 1000 currently sequenced proteins derived from Gram-negative and Gram-positive bacteria, archaea, fungi and plants. These proteins function as transporters for nucleobases including purines and pyrimidines. Members of this family possess twelve transmembrane α-helical spanners (TMSs). At least some of them have been shown to function in uptake by substrate:H+ symport mechanism.

Saccharide transporter family of transport proteins

The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) is a multi-protein system involved in the regulation of a variety of metabolic and transcriptional processes. The PTS catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. The general mechanism of the PTS is the following: a phosphoryl group from phosphoenolpyruvate (PEP) is transferred to enzyme-I (EI) of PTS which in turn transfers it to a phosphoryl carrier protein (HPr). Phospho-HPr then transfers the phosphoryl group to a sugar-specific permease which consists of at least three structurally distinct domains which can either be fused together in a single polypeptide chain or exist as two or three interactive chains, formerly called enzymes II (EII) and III (EIII). The IIC domain catalyzes the transfer of a phosphoryl group from IIB to the sugar substrate.

Mercury transporter group of transport proteins

The mercury transporter superfamily is a family of transmembrane bacterial transporters of mercury ions. The common origin of all Mer superfamily members has been established. The common elements between family members are included in TMSs 1-2. A representative list of the subfamilies and proteins that belong to those subfamilies is available in the Transporter Classification Database.

A protein superfamily is the largest grouping (clade) of proteins for which common ancestry can be inferred. Usually this common ancestry is inferred from structural alignment and mechanistic similarity, even if no sequence similarity is evident. Sequence homology can then be deduced even if not apparent. Superfamilies typically contain several protein families which show sequence similarity within each family. The term protein clan is commonly used for protease and glycosyl hydrolases superfamilies based on the MEROPS and CAZy classification systems.

The iron/lead transporter (ILT) family is a family of transmembrane proteins within the lysine exporter (LysE) superfamily. The ILT family includes two subfamilies, the iron-transporting (OFeT) family and the lead-transporting (PbrT) family. A representative list of the proteins belonging to these subfamilies of the ILT family can be found in the Transporter Classification Database.

The arsenical resistance-3 (ACR3) family is a member of the BART superfamily. Based on operon analyses, ARC3 homologues may function either as secondary carriers or as primary active transporters, similarly to the ArsB and ArsAB families. In the latter case ATP hydrolysis again energizes transport. ARC3 homologues transport the same anions as ArsA/AB homologues, though ArsB homologues are members of the IT Superfamily and homologues of the ARC3 family are within the BART Superfamily suggesting they may not be evolutionarily related.

The phosphotransferases system (PTS-GFL) superfamily is a superfamily of phosphotransferase enzymes that facilitate the transport of glucose, glucitol (G), fructose (F) and lactose (L). Classification has been established through phylogenic analysis and bioinformatics.

The PTSGlucose-Glucoside (Glc) family includes porters specific for glucose, glucosamine, N-acetylglucosamine and a large variety of α- and β-glucosides, and is part of the PTS-GFL superfamily.

The PTS Lactose-N,N’-Diacetylchitobiose (Lac) Family includes several sequenced lactose porters of Gram-positive bacteria, as well as the Escherichia coli and Borrelia burgdorferi N,N'-diacetylchitobiose (Chb) porters. It is part of the PTS-GFL superfamily. The former can transport aromatic β-glucosides and cellobiose, as well as Chb. However, only Chb induces expression of the chb operon.

The PTS Glucitol (Gut) Family consists only of glucitol-specific porters, but these occur both in Gram-negative and Gram-positive bacteria. It is part of the PTS-GFL superfamily.

Permease of phosphotransferase system is a superfamily of phosphotransferase enzymes that facilitate the transport of L-ascorbate (A) and galactitol (G). Classification has been established through phylogenic analysis and bioinformatics.

The PTS Galactitol (Gat) Family is part of the PTS-AG superfamily. The biochemistry of this family is poorly defined. The only well-characterized member of this family is the galactitol permease of Escherichia coli. However, a homologous IIC protein from Listeria monocytogenes has been shown to be required for D-arabitol fermentation. It presumably functions together with IIAGat and IIBGat homologues. IICGat is distantly related to IICSgc of E. coli; IIAGat is distantly related to IIASga and IIASgcof E. coli as well as IIAMtl and IIAFru. IIBGat is distantly related to IIBSga and IIBSgc of E. coli. Domains in the LicR/CelR family of transcriptional activators show C-terminal domains exhibiting weak sequence similarity to IIBGat and IIAGat.

The PTS L-Ascorbate (L-Asc) Family includes porters specific for L-ascorbate, and is part of the PTS-AG superfamily. A single PTS permease of the L-Asc family of PTS permeases has been functionally characterized. This is the SgaTBA system, renamed UlaABC by Yew and Gerlt.

The PTS Mannose-Fructose-Sorbose (Man) Family is a group of multicomponent PTS systems that are involved in sugar uptake in bacteria. This transport process is dependent on several cytoplasmic phosphoryl transfer proteins - Enzyme I (I), HPr, Enzyme IIA (IIA), and Enzyme IIB (IIB) as well as the integral membrane sugar permease complex (IICD). It is not part of the PTS-AG or PTS-GFL superfamilies.

References

  1. Chang, Abraham B.; Lin, Ron; Keith Studley, W.; Tran, Can V.; Saier, Milton H. (2004-06-01). "Phylogeny as a guide to structure and function of membrane transport proteins". Molecular Membrane Biology. 21 (3): 171–181. doi:10.1080/09687680410001720830. ISSN   0968-7688. PMID   15204625. S2CID   45284885.
  2. Nguyen, Thai X.; Yen, Ming-Ren; Barabote, Ravi D.; Saier, Milton H. (2006-01-01). "Topological predictions for integral membrane permeases of the phosphoenolpyruvate:sugar phosphotransferase system". Journal of Molecular Microbiology and Biotechnology. 11 (6): 345–360. doi:10.1159/000095636. ISSN   1464-1801. PMID   17114898. S2CID   25965070.

As of this edit, this article uses content from "4.A.2 The PTS Fructose-Mannitol (Fru) Family" , which is licensed in a way that permits reuse under the Creative Commons Attribution-ShareAlike 3.0 Unported License, but not under the GFDL. All relevant terms must be followed.