Packet segmentation

Last updated

In data communications networks, packet segmentation is the process of dividing a data packet into smaller units for transmission over the network. Packet segmentation happens at layer four of the OSI model; the transport layer. [1] Segmentation may be required when:

Protocols that perform packet segmentation at the source usually include a mechanism at the destination to reverse the process and reassemble the original packet from individual segments. This process may include automatic repeat-request (ARQ) mechanisms to detect missing segments and to request the source to re-transmit specific segments.

In a communication system based on a layered OSI model, packet segmentation may be responsible for splitting one MPDU into multiple physical layer service data units so that reliable transmission (and potential re-transmission via ARQ) of each one can be performed individually.

The ITU-T G.hn standard, which provides a way to create a high-speed (up to 1 gigabit/s) local area network using existing home wiring (power lines, phone lines and coaxial cables), is an example of a protocol that employs packet segmentation to increase reliability over noisy media.

See also

Related Research Articles

The Internet Control Message Protocol (ICMP) is a supporting protocol in the Internet protocol suite. It is used by network devices, including routers, to send error messages and operational information indicating success or failure when communicating with another IP address, for example, an error is indicated when a requested service is not available or that a host or router could not be reached. ICMP differs from transport protocols such as TCP and UDP in that it is not typically used to exchange data between systems, nor is it regularly employed by end-user network applications.

The Internet Protocol (IP) is the principal communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet.

The Internet protocol suite is the conceptual model and set of communications protocols used in the Internet and similar computer networks. It is commonly known as TCP/IP because the foundational protocols in the suite are the Transmission Control Protocol (TCP) and the Internet Protocol (IP). During its development, versions of it were known as the Department of Defense (DoD) model because the development of the networking method was funded by the United States Department of Defense through DARPA. Its implementation is a protocol stack.

OSI model Model of communication of seven abstraction layers

The Open Systems Interconnection model is a conceptual model that characterises and standardises the communication functions of a telecommunication or computing system without regard to its underlying internal structure and technology. Its goal is the interoperability of diverse communication systems with standard communication protocols.

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP, which is part of the Transport Layer of the TCP/IP suite. SSL/TLS often runs on top of TCP.

In computer networking, the User Datagram Protocol (UDP) is one of the core members of the Internet protocol suite. The protocol was designed by David P. Reed in 1980 and formally defined in RFC 768. With UDP, computer applications can send messages, in this case referred to as datagrams, to other hosts on an Internet Protocol (IP) network. Prior communications are not required in order to set up communication channels or data paths.

Automatic repeat request (ARQ), also known as automatic repeat query, is an error-control method for data transmission that uses acknowledgements and timeouts to achieve reliable data transmission over an unreliable communication channel. If the sender does not receive an acknowledgment before the timeout, it usually re-transmits the packet until the sender receives an acknowledgment or exceeds a predefined number of retransmissions.

Protocol data unit Unit of information transmitted between peer entities (at the same layer) of a computer network

In telecommunications, a protocol data unit (PDU) is a single unit of information transmitted among peer entities of a computer network. A PDU is composed of protocol-specific control information and user data. In the layered architectures of communication protocol stacks, each layer implements protocols tailored to the specific type or mode of data exchange.

In telecommunications and computer networking, a network packet is a formatted unit of data carried by a packet-switched network. A packet consists of control information and user data; the latter is also known as the payload. Control information provides data for delivering the payload. Typically, control information is found in packet headers and trailers.

In the seven-layer OSI model of computer networking, the network layer is layer 3. The network layer is responsible for packet forwarding including routing through intermediate routers.

In the IEEE 802 reference model of computer networking, the logical link control (LLC) data communication protocol layer is the upper sublayer of the data link layer of the seven-layer OSI model. The LLC sublayer acts as an interface between the media access control (MAC) sublayer and the network layer.

In computer networking, the transport layer is a conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer provide host-to-host communication services for applications. It provides services such as connection-oriented communication, reliability, flow control, and multiplexing.

The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and might provide the means to detect and possibly correct errors that may occur in the physical layer.

A multilayer switch (MLS) is a computer networking device that switches on OSI layer 2 like an ordinary network switch and provides extra functions on higher OSI layers.

Selective Repeat ARQ/Selective Reject ARQ is a specific instance of the automatic repeat request (ARQ) protocol used to manage sequence numbers and retransmissions in reliable communications.

In computer networking, large send offload (LSO) is a technique for increasing egress throughput of high-bandwidth network connections by reducing CPU overhead. It works by passing a multipacket buffer to the network interface card (NIC). The NIC then splits this buffer into separate packets. The technique is also called TCP segmentation offload (TSO) when applied to TCP, or generic segmentation offload (GSO).

Computer network Network that allows computers to share resources and communicate with each other

A computer network is a group of computers that use a set of common communication protocols over digital interconnections for the purpose of sharing resources located on or provided by the network nodes. The interconnections between nodes are formed from a broad spectrum of telecommunication network technologies, based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

The internet layer is a group of internetworking methods, protocols, and specifications in the Internet protocol suite that are used to transport network packets from the originating host across network boundaries; if necessary, to the destination host specified by an IP address. The internet layer derives its name from its function facilitating internetworking, which is the concept of connecting multiple networks with each other through gateways.

A communication protocol is a system of rules that allow two or more entities of a communications system to transmit information via any kind of variation of a physical quantity. The protocol defines the rules, syntax, semantics and synchronization of communication and possible error recovery methods. Protocols may be implemented by hardware, software, or a combination of both.

In digital communications networks, packet processing refers to the wide variety of algorithms that are applied to a packet of data or information as it moves through the various network elements of a communications network. With the increased performance of network interfaces, there is a corresponding need for faster packet processing.

References

  1. "How the TCP/IP Protocols Handle Data Communications - Oracle Solaris Administration: IP Services". docs.oracle.com. Retrieved July 3, 2018.