Parabolic induction

Last updated

In mathematics, parabolic induction is a method of constructing representations of a reductive group from representations of its parabolic subgroups.

Contents

If G is a reductive algebraic group and is the Langlands decomposition of a parabolic subgroup P, then parabolic induction consists of taking a representation of , extending it to P by letting N act trivially, and inducing the result from P to G.

There are some generalizations of parabolic induction using cohomology, such as cohomological parabolic induction and Deligne–Lusztig theory.

Philosophy of cusp forms

The philosophy of cusp forms was a slogan of Harish-Chandra, expressing his idea of a kind of reverse engineering of automorphic form theory, from the point of view of representation theory. [1] The discrete group Γ fundamental to the classical theory disappears, superficially. What remains is the basic idea that representations in general are to be constructed by parabolic induction of cuspidal representations. [2] A similar philosophy was enunciated by Israel Gelfand, [3] and the philosophy is a precursor of the Langlands program. A consequence for thinking about representation theory is that cuspidal representations are the fundamental class of objects, from which other representations may be constructed by procedures of induction.

According to Nolan Wallach [4]

Put in the simplest terms the "philosophy of cusp forms" says that for each Γ-conjugacy classes of Q-rational parabolic subgroups one should construct automorphic functions (from objects from spaces of lower dimensions) whose constant terms are zero for other conjugacy classes and the constant terms for [an] element of the given class give all constant terms for this parabolic subgroup. This is almost possible and leads to a description of all automorphic forms in terms of these constructs and cusp forms. The construction that does this is the Eisenstein series.

Notes

  1. Daniel Bump, Automorphic Forms and Representations (1998), p. 421.
  2. See Daniel Bump, Lie Groups (2004), p. 397.
  3. Gelfand, I. M. (1962), "Automorphic functions and the theory of representations", Proceedings, International Congress of Mathematicians, Stockholm, pp. 74–85.
  4. Nolan Wallach Introductory lectures on automorphic forms, p.80.

Related Research Articles

<span class="mw-page-title-main">Robert Langlands</span> Canadian mathematician

Robert Phelan Langlands, is a Canadian mathematician. He is best known as the founder of the Langlands program, a vast web of conjectures and results connecting representation theory and automorphic forms to the study of Galois groups in number theory, for which he received the 2018 Abel Prize. He was an emeritus professor and occupied Albert Einstein's office at the Institute for Advanced Study in Princeton, until 2020 when he retired.

In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and consequential conjectures about connections between number theory and geometry. Proposed by Robert Langlands, it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics."

In mathematics, a modular form is a (complex) analytic function on the upper half-plane, , that satisfies:

In number theory, a branch of mathematics, a cusp form is a particular kind of modular form with a zero constant coefficient in the Fourier series expansion.

In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group G to the complex numbers which is invariant under the action of a discrete subgroup of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups.

In mathematics, the Ramanujan conjecture, due to Srinivasa Ramanujan (1916, p. 176), states that Ramanujan's tau function given by the Fourier coefficients τ(n) of the cusp form Δ(z) of weight 12

In mathematics, the Selberg trace formula, introduced by Selberg (1956), is an expression for the character of the unitary representation of a Lie group G on the space L2(Γ\G) of square-integrable functions, where Γ is a cofinite discrete group. The character is given by the trace of certain functions on G.

In mathematics, an Artin L-function is a type of Dirichlet series associated to a linear representation ρ of a Galois group G. These functions were introduced in 1923 by Emil Artin, in connection with his research into class field theory. Their fundamental properties, in particular the Artin conjecture described below, have turned out to be resistant to easy proof. One of the aims of proposed non-abelian class field theory is to incorporate the complex-analytic nature of Artin L-functions into a larger framework, such as is provided by automorphic forms and the Langlands program. So far, only a small part of such a theory has been put on a firm basis.

In number theory, cuspidal representations are certain representations of algebraic groups that occur discretely in spaces. The term cuspidal is derived, at a certain distance, from the cusp forms of classical modular form theory. In the contemporary formulation of automorphic representations, representations take the place of holomorphic functions; these representations may be of adelic algebraic groups.

In mathematics, the local Langlands conjectures, introduced by Robert Langlands, are part of the Langlands program. They describe a correspondence between the complex representations of a reductive algebraic group G over a local field F, and representations of the Langlands group of F into the L-group of G. This correspondence is not a bijection in general. The conjectures can be thought of as a generalization of local class field theory from abelian Galois groups to non-abelian Galois groups.

In mathematics, Deligne–Lusztig theory is a way of constructing linear representations of finite groups of Lie type using ℓ-adic cohomology with compact support, introduced by Pierre Deligne and George Lusztig (1976).

In mathematics, the Langlands classification is a description of the irreducible representations of a reductive Lie group G, suggested by Robert Langlands (1973). There are two slightly different versions of the Langlands classification. One of these describes the irreducible admissible (g, K)-modules, for g a Lie algebra of a reductive Lie group G, with maximal compact subgroup K, in terms of tempered representations of smaller groups. The tempered representations were in turn classified by Anthony Knapp and Gregg Zuckerman. The other version of the Langlands classification divides the irreducible representations into L-packets, and classifies the L-packets in terms of certain homomorphisms of the Weil group of R or C into the Langlands dual group.

In mathematics, a tempered representation of a linear semisimple Lie group is a representation that has a basis whose matrix coefficients lie in the Lp space

In mathematics, the main results concerning irreducible unitary representations of the Lie group SL(2, R) are due to Gelfand and Naimark (1946), V. Bargmann (1947), and Harish-Chandra (1952).

In mathematics, the Arthur–Selberg trace formula is a generalization of the Selberg trace formula from the group SL2 to arbitrary reductive groups over global fields, developed by James Arthur in a long series of papers from 1974 to 2003. It describes the character of the representation of G(A) on the discrete part L2
0
(G(F)\G(A))
of L2(G(F)\G(A)) in terms of geometric data, where G is a reductive algebraic group defined over a global field F and A is the ring of adeles of F.

In the mathematical theory of automorphic representations, a multiplicity-one theorem is a result about the representation theory of an adelic reductive algebraic group. The multiplicity in question is the number of times a given abstract group representation is realised in a certain space, of square-integrable functions, given in a concrete way.

In mathematics, the Langlands–Shahidi method provides the means to define automorphic L-functions in many cases that arise with connected reductive groups over a number field. This includes Rankin–Selberg products for cuspidal automorphic representations of general linear groups. The method develops the theory of the local coefficient, which links to the global theory via Eisenstein series. The resulting L-functions satisfy a number of analytic properties, including an important functional equation.

In mathematics, Lafforgue's theorem, due to Laurent Lafforgue, completes the Langlands program for general linear groups over algebraic function fields, by giving a correspondence between automorphic forms on these groups and representations of Galois groups.

In mathematics, a unipotent representation of a reductive group is a representation that has some similarities with unipotent conjugacy classes of groups.

In mathematical representation theory, the Eisenstein integral is an integral introduced by Harish-Chandra in the representation theory of semisimple Lie groups, analogous to Eisenstein series in the theory of automorphic forms. Harish-Chandra used Eisenstein integrals to decompose the regular representation of a semisimple Lie group into representations induced from parabolic subgroups. Trombi gave a survey of Harish-Chandra's work on this.

References