Paraconical pendulum

Last updated
Modern Automated Paraconical Pendulum at Gode Wissenschafts Stiftung Pendelaufbau.jpg
Modern Automated Paraconical Pendulum at Göde Wissenschafts Stiftung

The paraconical pendulum is a type of pendulum invented in the 1950s by Maurice Allais, a French researcher. During the 1950s, Maurice Allais conducted six marathon series of long-term observations, during each of which his team manually operated and manually monitored his pendulum non-stop over about a month. The objective was to investigate possible changes over time of the characteristics of the motion, hypothesized to yield information about asymmetries of inertial space (sometimes described as "aether flow").

Contents

Characterization and experiments

The defining feature of the "paraconical" or "ball-borne" pendulum is that the pendulum's fulcrum is the changing point of contact between a spherical metal ball and a flat surface on which the ball rests. The pendulum therefore loses energy to rolling friction but not sliding friction, and is able to swing freely in both dimensions (forward-backward and side-to-side), similar to an ordinary conical pendulum. The main difference between a paraconical pendulum and an ordinary conical pendulum is the size of the ball involved: shrinking the ball down to a point produces an ordinary conical pendulum.

Typically a paraconical pendulum is built as a solid body with a stiff rod, rather than with a flexible wire or cord. If an accurately spherical ball and an accurately planar flat are used, a paraconical pendulum is a highly sensitive instrument.

As with the conical Foucault pendulum, a paraconical pendulum will be affected by the rotation of the Earth; but the changing fulcrum point makes the behavior of this dynamical system rather more complex.[ citation needed ] As first noted by Allais, and now confirmed by modern researchers,[ citation needed ] its motion exhibits a 24.8-hour cyclic pattern.

See also

Related Research Articles

<span class="mw-page-title-main">Pendulum clock</span> Clock regulated by a pendulum

A pendulum clock is a clock that uses a pendulum, a swinging weight, as its timekeeping element. The advantage of a pendulum for timekeeping is that it is an approximate harmonic oscillator: It swings back and forth in a precise time interval dependent on its length, and resists swinging at other rates. From its invention in 1656 by Christiaan Huygens, inspired by Galileo Galilei, until the 1930s, the pendulum clock was the world's most precise timekeeper, accounting for its widespread use. Throughout the 18th and 19th centuries, pendulum clocks in homes, factories, offices, and railroad stations served as primary time standards for scheduling daily life, work shifts, and public transportation. Their greater accuracy allowed for the faster pace of life which was necessary for the Industrial Revolution. The home pendulum clock was replaced by less-expensive synchronous electric clocks in the 1930s and '40s. Pendulum clocks are now kept mostly for their decorative and antique value.

<span class="mw-page-title-main">Pendulum</span> Mechanism for regulating the speed of clocks

A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth. The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing.

<span class="mw-page-title-main">Bearing (mechanical)</span> Mechanism to constrain relative movement to the desired motion and reduce friction

A bearing is a machine element that constrains relative motion to only the desired motion and reduces friction between moving parts. The design of the bearing may, for example, provide for free linear movement of the moving part or for free rotation around a fixed axis; or, it may prevent a motion by controlling the vectors of normal forces that bear on the moving parts. Most bearings facilitate the desired motion by minimizing friction. Bearings are classified broadly according to the type of operation, the motions allowed, or the directions of the loads (forces) applied to the parts.

<span class="mw-page-title-main">History of geodesy</span>

The history of geodesy (/dʒiːˈɒdɪsi/) began during antiquity and ultimately blossomed during the Age of Enlightenment.

<i>Two New Sciences</i> 1638 book by Galileo Galilei

The Discourses and Mathematical Demonstrations Relating to Two New Sciences published in 1638 was Galileo Galilei's final book and a scientific testament covering much of his work in physics over the preceding thirty years. It was written partly in Italian and partly in Latin.

<span class="mw-page-title-main">Maurice Allais</span> French economist (1911–2010)

Maurice Félix Charles Allais was a French physicist and economist, the 1988 winner of the Nobel Memorial Prize in Economic Sciences "for his pioneering contributions to the theory of markets and efficient utilization of resources", along with John Hicks and Paul Samuelson, to neoclassical synthesis. They formalize the self-regulation of markets, which Keynes refuted but reiterated some of Allais's ideas.

<span class="mw-page-title-main">Escapement</span> Mechanism for regulating the speed of clocks

An escapement is a mechanical linkage in mechanical watches and clocks that gives impulses to the timekeeping element and periodically releases the gear train to move forward, advancing the clock's hands. The impulse action transfers energy to the clock's timekeeping element to replace the energy lost to friction during its cycle and keep the timekeeper oscillating. The escapement is driven by force from a coiled spring or a suspended weight, transmitted through the timepiece's gear train. Each swing of the pendulum or balance wheel releases a tooth of the escapement's escape wheel, allowing the clock's gear train to advance or "escape" by a fixed amount. This regular periodic advancement moves the clock's hands forward at a steady rate. At the same time, the tooth gives the timekeeping element a push, before another tooth catches on the escapement's pallet, returning the escapement to its "locked" state. The sudden stopping of the escapement's tooth is what generates the characteristic "ticking" sound heard in operating mechanical clocks and watches.

<span class="mw-page-title-main">Rolling-element bearing</span> Bearing which carries a load with rolling elements placed between two grooved rings

In mechanical engineering, a rolling-element bearing, also known as a rolling bearing, is a bearing which carries a load by placing rolling elements between two concentric, grooved rings called races. The relative motion of the races causes the rolling elements to roll with very little rolling resistance and with little sliding.

<span class="mw-page-title-main">Allais effect</span> Alleged anomalous behavior of pendulums and gravimeters

The Allais effect is the alleged anomalous behavior of pendulums or gravimeters which is sometimes purportedly observed during a solar eclipse. The effect was first reported as an anomalous precession of the plane of oscillation of a Foucault pendulum during the solar eclipse of June 30, 1954 by Maurice Allais, a French polymath who later won the Nobel Prize in Economics. Allais reported another observation of the effect during the solar eclipse of October 2, 1959 using the paraconical pendulum he invented. This study earned him the 1959 Galabert Prize of the French Astronautical Society and made him a laureate of the U.S. Gravity Research Foundation for his 1959 memoir on gravity. The veracity of the Allais effect remains controversial among the scientific community, as its testing has frequently met with inconsistent or ambiguous results over more than five decades of observation.

<span class="mw-page-title-main">Anchor escapement</span> Type of mechanism used in pendulum clocks

In horology, the anchor escapement is a type of escapement used in pendulum clocks. The escapement is a mechanism in a mechanical clock that maintains the swing of the pendulum by giving it a small push each swing, and allows the clock's wheels to advance a fixed amount with each swing, moving the clock's hands forward. The anchor escapement was so named because one of its principal parts is shaped vaguely like a ship's anchor.

<span class="mw-page-title-main">Verge escapement</span> Early clock mechanism

The vergeescapement is the earliest known type of mechanical escapement, the mechanism in a mechanical clock that controls its rate by allowing the gear train to advance at regular intervals or 'ticks'. Verge escapements were used from the late 13th century until the mid 19th century in clocks and pocketwatches. The name verge comes from the Latin virga, meaning stick or rod.

<span class="mw-page-title-main">Newton's cradle</span> Device that demonstrates conservation of momentum and energy by a series of swinging spheres

Newton's cradle is a device, usually made of metal, that demonstrates the principles of conservation of momentum and conservation of energy in physics with swinging spheres. When one sphere at the end is lifted and released, it strikes the stationary spheres, compressing them and thereby transmitting a pressure wave through the stationary spheres, which creates a force that pushes the last sphere upward. The last sphere swings back and strikes the stationary spheres, repeating the effect in the opposite direction. The device is named after 17th-century English scientist Sir Isaac Newton and was designed by French scientist Edme Mariotte. It is also known as Newton's pendulum, Newton's balls, Newton's rocker or executive ball clicker.

In the 19th century, the theory of the luminiferous aether as the hypothetical medium for the propagation of light waves was widely discussed. The aether hypothesis arose because physicists of that era could not conceive of light waves propagating without a physical medium in which to do so. When experiments failed to detect the hypothesized luminiferous aether, physicists conceived explanations for the experiments' failure which preserved the hypothetical aether's existence.

<span class="mw-page-title-main">Rocker arm</span> Oscillating lever in engine

A rocker arm is a valvetrain component that typically transfers the motion of a pushrod in an overhead valve internal combustion engine to the corresponding intake/exhaust valve.

<span class="mw-page-title-main">Conical pendulum</span>

A conical pendulum consists of a weight fixed on the end of a string or rod suspended from a pivot. Its construction is similar to an ordinary pendulum; however, instead of swinging back and forth along a circular arc, the bob of a conical pendulum moves at a constant speed in a circle or ellipse with the string tracing out a cone. The conical pendulum was first studied by the English scientist Robert Hooke around 1660 as a model for the orbital motion of planets. In 1673 Dutch scientist Christiaan Huygens calculated its period, using his new concept of centrifugal force in his book Horologium Oscillatorium. Later it was used as the timekeeping element in a few mechanical clocks and other clockwork timing devices.

<span class="mw-page-title-main">Tapered roller bearing</span> Type of roller bearing which can support axial loads

Tapered roller bearings are rolling element bearings that can support axial forces as well as radial forces.

<span class="mw-page-title-main">Earth's rotation</span> Rotation of Earth around its axis

Earth's rotation or Earth's spin is the rotation of planet Earth around its own axis, as well as changes in the orientation of the rotation axis in space. Earth rotates eastward, in prograde motion. As viewed from the northern polar star Polaris, Earth turns counterclockwise.

<span class="mw-page-title-main">Ball screw</span> Low-friction linear actuator

A ball screw is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical raceway for ball bearings which act as a precision screw. As well as being able to apply or withstand high thrust loads, they can do so with minimum internal friction. They are made to close tolerances and are therefore suitable for high-precision applications. The ball assembly acts as the nut while the threaded shaft is the screw.

<span class="mw-page-title-main">Marine chronometer</span> Clock used on ships to aid in navigation

A marine chronometer is a precision timepiece that is carried on a ship and employed in the determination of the ship's position by celestial navigation. It is used to determine longitude by comparing Greenwich Mean Time (GMT), and the time at the current location found from observations of celestial bodies. When first developed in the 18th century, it was a major technical achievement, as accurate knowledge of the time over a long sea voyage was vital for effective navigation, lacking electronic or communications aids. The first true chronometer was the life work of one man, John Harrison, spanning 31 years of persistent experimentation and testing that revolutionized naval navigation.

<span class="mw-page-title-main">Solar eclipse of October 2, 1959</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Friday, October 2, 1959, with a magnitude of 1.0325. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from northeastern Massachusetts and the southern tip of New Hampshire in the United States, Canary Islands, Morocco, Spanish Sahara including the capital city Laayoune, French Mauritania, Mali Federation, French Niger, British Nigeria, British Cameroons and French Cameroons, French Chad including the capital city Fort-Lamy, French Central Africa, Sudan, Ethiopia, and the Trust Territory of Somaliland.