Passive autocatalytic recombiner

Last updated
Passive autocatalytic recombiner Passive Autocatalytic Recombiner (PAR).png
Passive autocatalytic recombiner

Passive autocatalytic recombiner (PAR) is a device that removes hydrogen from the containment of a nuclear power plant during an accident. Its purpose is to prevent hydrogen explosions. Recombiners come into action spontaneously as soon as the hydrogen concentration increases. They are passive devices because their operation does not require external energy. [1]

Hydrogen may be generated in a nuclear accident if the reactor fuel overheats and zirconium cladding of the fuel rods reacts chemically with steam. If the hydrogen is released from the reactor to the containment, it may get mixed with air and form a flammable or even explosive mixture. A hydrogen explosion could break the containment and cause radioactive materials to be released to the environment. Recombiners aim at removing hydrogen and thereby preventing explosions. [2]

Inside a recombiner there are plates or pellets that are coated with platinum or palladium catalyst. On the surface of the catalyst, hydrogen and oxygen molecules react chemically at low temperature and low hydrogen concentration. The reaction generates steam. The reaction starts spontaneously when the hydrogen concentration reaches 1–2 percent. Burning of hydrogen in air requires at least 4 percent hydrogen concentration, and even higher for an explosion. Therefore, a recombiner is able to remove hydrogen from the containment before a flammable concentration is reached. [1]

A recombiner is a box that is open from the bottom and from the top. The catalyst is located at the lower part of the box. The reaction of hydrogen and oxygen on the catalyst surface generates heat, and temperature in the recombiner reaches hundreds of degrees Celsius. Hot steam is lighter than the air in the containment, so buoyancy is caused inside the recombiner, much like in a chimney. This causes a strong airflow through the recombiner, feeding hydrogen and oxygen from the containment to the device. [1]

Hundreds of kilograms of hydrogen may be generated in a few hours during a severe reactor accident. [1] The most efficient recombiner made by Framatome (formerly Areva) removes slightly over five kilograms of hydrogen per hour when the hydrogen concentration is four percent. [3] Therefore, many recombiners are needed. For example, the containment of Olkiluoto 3 EPR in Finland has 50 recombiners. [2]

Manufacturers of passive autocatalytic recombiners include Framatome, [3] SNC-Lavalin (formerly Atomic Energy of Canada Ltd, AECL), [4] and German Siempelkamp-NIS. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Pressurized water reactor</span> Type of nuclear reactor

A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants. In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a steam generator, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated. The steam then drives turbines, which spin an electric generator. In contrast to a boiling water reactor (BWR), pressure in the primary coolant loop prevents the water from boiling within the reactor. All light-water reactors use ordinary water as both coolant and neutron moderator. Most use anywhere from two to four vertically mounted steam generators; VVER reactors use horizontal steam generators.

<span class="mw-page-title-main">Boiling water reactor</span> Type of nuclear reactor that directly boils water

A boiling water reactor (BWR) is a type of light water nuclear reactor used for the generation of electrical power. It is a design different from a Soviet graphite-moderated RBMK. It is the second most common type of electricity-generating nuclear reactor after the pressurized water reactor (PWR), which is also a type of light water nuclear reactor.

<span class="mw-page-title-main">Pebble-bed reactor</span> Type of very-high-temperature reactor

The pebble-bed reactor (PBR) is a design for a graphite-moderated, gas-cooled nuclear reactor. It is a type of very-high-temperature reactor (VHTR), one of the six classes of nuclear reactors in the Generation IV initiative.

<span class="mw-page-title-main">Nuclear meltdown</span> Severe nuclear reactor accident that results in core damage from overheating

A nuclear meltdown is a severe nuclear reactor accident that results in core damage from overheating. The term nuclear meltdown is not officially defined by the International Atomic Energy Agency or by the United States Nuclear Regulatory Commission. It has been defined to mean the accidental melting of the core of a nuclear reactor, however, and is in common usage a reference to the core's either complete or partial collapse.

Atomic Energy of Canada Limited (AECL) is a Canadian federal Crown corporation and Canada's largest nuclear science and technology laboratory. AECL developed the CANDU reactor technology starting in the 1950s, and in October 2011 licensed this technology to Candu Energy.

<span class="mw-page-title-main">Loss-of-coolant accident</span> Event where coolant is lost in a nuclear reactor

A loss-of-coolant accident (LOCA) is a mode of failure for a nuclear reactor; if not managed effectively, the results of a LOCA could result in reactor core damage. Each nuclear plant's emergency core cooling system (ECCS) exists specifically to deal with a LOCA.

<span class="mw-page-title-main">Light-water reactor</span> Type of nuclear reactor that uses normal water

The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron reactors are the most common type of nuclear reactor, and light-water reactors are the most common type of thermal-neutron reactor.

Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency. Such design features tend to rely on the engineering of components such that their predicted behaviour would slow down, rather than accelerate the deterioration of the reactor state; they typically take advantage of natural forces or phenomena such as gravity, buoyancy, pressure differences, conduction or natural heat convection to accomplish safety functions without requiring an active power source. Many older common reactor designs use passive safety systems to a limited extent, rather, relying on active safety systems such as diesel powered motors. Some newer reactor designs feature more passive systems; the motivation being that they are highly reliable and reduce the cost associated with the installation and maintenance of systems that would otherwise require multiple trains of equipment and redundant safety class power supplies in order to achieve the same level of reliability. However, weak driving forces that power many passive safety features can pose significant challenges to effectiveness of a passive system, particularly in the short term following an accident.

<span class="mw-page-title-main">Ringhals Nuclear Power Plant</span> Nuclear power plant in Sweden

Ringhals is a nuclear power plant in Sweden. It is situated on the Värö Peninsula in Varberg Municipality approximately 65 km south of Gothenburg. With a total power rating of 2,190 MWe, it is the second largest power plant in Sweden. It is owned 70% by Vattenfall and 30% by Uniper SE.

<span class="mw-page-title-main">Containment building</span> Structure surrounding a nuclear reactor to prevent radioactive releases

A containment building is a reinforced steel, concrete or lead structure enclosing a nuclear reactor. It is designed, in any emergency, to contain the escape of radioactive steam or gas to a maximum pressure in the range of 275 to 550 kPa. The containment is the fourth and final barrier to radioactive release, the first being the fuel ceramic itself, the second being the metal fuel cladding tubes, the third being the reactor vessel and coolant system.

The Whiteshell Laboratories, originally known as the Whiteshell Nuclear Research Establishment (WNRE) was an Atomic Energy of Canada (AECL) laboratory in Manitoba, northeast of Winnipeg. It was originally built as a home for the experimental WR-1 reactor, but over time came to host a variety of experimental systems, including a SLOWPOKE reactor and the Underground Research Laboratory to study nuclear waste disposal. Employment peaked in the early 1970s at about 1,300, but during the 1980s the experiments began to wind down, and in 2003 the decision was made to close the site. As of 2017 the site is undergoing decommissioning with a planned completion date in 2024.

The Advanced CANDU reactor (ACR), or ACR-1000, was a proposed Generation III+ nuclear reactor design, developed by Atomic Energy of Canada Limited (AECL). It combined features of the existing CANDU pressurised heavy water reactors (PHWR) with features of light-water cooled pressurized water reactors (PWR). From CANDU, it took the heavy water moderator, which gave the design an improved neutron economy that allowed it to burn a variety of fuels. It replaced the heavy water cooling loop with one containing conventional light water, reducing costs. The name refers to its design power in the 1,000 MWe class, with the baseline around 1,200 MWe.

<span class="mw-page-title-main">Zirconium hydride</span>

Zirconium hydride describes an alloy made by combining zirconium and hydrogen. Hydrogen acts as a hardening agent, preventing dislocations in the zirconium atom crystal lattice from sliding past one another. Varying the amount of hydrogen and the form of its presence in the zirconium hydride controls qualities such as the hardness, ductility, and tensile strength of the resulting zirconium hydride. Zirconium hydride with increased hydrogen content can be made harder and stronger than zirconium, but such zirconium hydride is also less ductile than zirconium.

<span class="mw-page-title-main">Next Generation Nuclear Plant</span> Cancelled American reactor project

A Next Generation Nuclear Plant (NGNP) is a specific proposed generation IV very-high-temperature reactor (VHTR) that could be coupled to a neighboring hydrogen production facility. It could also produce electricity and supply process heat. Up to 30% of this heat could be used to produce hydrogen via high-temperature electrolysis significantly reducing the cost of the process. The envisioned reactor design is helium-cooled, using graphite-moderated thermal neutrons, and TRISO fueled.

Hydrogen safety covers the safe production, handling and use of hydrogen, particularly hydrogen gas fuel and liquid hydrogen.

The three primary objectives of nuclear reactor safety systems as defined by the U.S. Nuclear Regulatory Commission are to shut down the reactor, maintain it in a shutdown condition and prevent the release of radioactive material.

A nuclear reactor coolant is a coolant in a nuclear reactor used to remove heat from the nuclear reactor core and transfer it to electrical generators and the environment. Frequently, a chain of two coolant loops are used because the primary coolant loop takes on short-term radioactivity from the reactor.

Boiling water reactor safety systems are nuclear safety systems constructed within boiling water reactors in order to prevent or mitigate environmental and health hazards in the event of accident or natural disaster.

<span class="mw-page-title-main">Integral Molten Salt Reactor</span>

The Integral Molten Salt Reactor (IMSR) is a nuclear power plant design targeted at developing a commercial product for the small modular reactor (SMR) market. It employs molten salt reactor technology which is being developed by the Canadian company Terrestrial Energy. It is based closely on the denatured molten salt reactor (DMSR), a reactor design from Oak Ridge National Laboratory. It also incorporates elements found in the SmAHTR, a later design from the same laboratory. The IMSR belongs to the DMSR class of molten salt reactors (MSR) and hence is a "burner" reactor that employs a liquid fuel rather than a conventional solid fuel; this liquid contains the nuclear fuel and also serves as primary coolant.

<span class="mw-page-title-main">Organic nuclear reactor</span> Nuclear reactor that uses organic liquids for cooling and neutron moderation

An organic nuclear reactor, or organic cooled reactor (OCR), is a type of nuclear reactor that uses some form of organic fluid, typically a hydrocarbon substance like polychlorinated biphenyl (PCB), for cooling and sometimes as a neutron moderator as well.

References

  1. 1 2 3 4 Arnould, F.; Bachellerie, E.; Auglaire, M.; Boeck, D.; Braillard, O.; Eckardt, B.; Ferroni, F.; Moffett, R.; Van Goethem, G. (2001). "State of the art on hydrogen passive autocatalytic recombiner" (PDF). 9th International Conference on Nuclear Engineering, Nice, France, 8–12 April 2001. Retrieved 4 March 2018.
  2. 1 2 "Status report on hydrogen management and related computer codes" (PDF). OECD Nuclear Energy Agency. 20 January 2015. Retrieved 4 March 2018.
  3. 1 2 "Areva passive autocatalytic recombiner" (PDF). Areva. 2013. Archived from the original (PDF) on 3 March 2018. Retrieved 4 March 2018.
  4. "BWR/PWR Products & Services" (PDF). SNC-Lavalin. Retrieved 13 November 2021.
  5. "NIS-PAR – NIS Passive Autocatalytic Recombiner" (PDF) (in German). Siempelkamp-NIS. 2021. Retrieved 30 November 2021.