Patchy particles

Last updated

Patchy particles are micron- or nanoscale colloidal particles that are anisotropically patterned, either by modification of the particle surface chemistry ("enthalpic patches"), [1] through particle shape ("entropic patches"), [2] or both. [3] The particles have a repulsive core and highly interactive surfaces that allow for this assembly. [2] The placement of these patches on the surface of a particle promotes bonding with patches on other particles. Patchy particles are used as a shorthand for modelling anisotropic colloids, [1] proteins [4] and water [5] and for designing approaches to nanoparticle synthesis. [6] Patchy particles range in valency from two (Janus particles) or higher. [7] Patchy particles of valency three or more experience liquid-liquid phase separation. [8] [9] Some phase diagrams of patchy particles do not follow the law of rectilinear diameters. [8]

Contents

Schematic depiction of modifying a spherical (e.g. colloidal) particle (center) to create a patchy particle, either by altering surface chemistry (left) or shape (right). Patchy Particles.png
Schematic depiction of modifying a spherical (e.g. colloidal) particle (center) to create a patchy particle, either by altering surface chemistry (left) or shape (right).

Assembly of patchy particles

Simulations

The interaction between patchy particles can be described by a combination of two discontinuous potentials. A hard sphere potential accounting for the repulsion between the cores of the particles and an attractive square potential for the attraction between the patches. [8] [9] With the interaction potential in hand one can use different methods to compute thermodynamic properties.

Molecular dynamics

Using a continuous representation [8] of the discontinuous potential described above enables the simulation of patchy particles using molecular dynamics.

Monte Carlo

One simulation done involves a Monte Carlo method, where the best “move” ensures equilibrium in the particle. One type of move is rototranslation. This is carried out by choosing a random particle, random angular and radial displacements, and a random axis of rotation. [10] Rotational degrees of freedom need to be determined prior to the simulation. The particle is then rotated/moved according to these values. Also, the integration time step needs to be controlled because it will affect the resulting shape/size of the particle. Another simulation done is the grand-canonical ensemble. In the grand-canonical ensemble, the system is in equilibrium with a thermal bath and reservoir of particles. [10] Volume, temperature, and chemical potential are fixed. Because of these constants, a number of particles (n) changes. This is typically used to monitor phase behaviour. With these additional moves, the particle is added at a random orientation and random position.

Other simulations involve biased Monte Carlo moves. One type is aggregation volume-bias moves. It consists of 2 moves; the first tries to form bond between two previously unbonded particles, the second tries to break an existing bond by separation. Aggregation volume-bias moves reflects the following procedure: two particles are chosen, I and J, which are not neighboring particles, particle J is moved inside the bonding volume of particle I. This process is carried out uniformly. Another aggregation volume-bias move follows a method of randomly choosing a particle J that is bonded to I. Particle J is then moved outside the bonding volume of particle I, resulting in the two particles no longer being bonded. [10] A third type of aggregation volume-bias move takes a particle I bonded to particle J and inserts it into a third particle.

Grand canonical ensemble is improved by aggregation volume-bias moves. When aggregation volume-bias moves are applied, the rate of monomer formation and depletion in enhanced and the grand-canonical ensemble moves increase.

A second biased Monte Carlo simulation is virtual move Monte Carlo. This is a cluster move algorithm. It was made to improve relaxation times in strongly interacting, low density systems and to better approximate diffusive dynamics in the system. [10] This simulation is good for self-assembling and polymeric systems that can find natural moves that relax the system.

Self-assembly

Self-assembly is also a method to create patchy particles. This method allows formation of complex structures like chains, sheets, rings, icosahedra, square pyramids, tetrahedra, and twisted staircase structures. [1] By coating the surface of particles with highly anisotropic, highly directional, weakly interacting patches, the arrangement of the attractive patches can organize disordered particles into structures. The coating and the arrangement of the attractive patches is what contributes to the size, shape, and structure of the resulting particle. [1]

Emergent valence self-assembly

Developing entropic patches that will self-assemble into simple cubic, body-centered cubic (bcc), diamond, and dodecagonal quasicrystal structures. The local coordination shell partially dictates the structure that is assembled. [2] Spheres are simulated with cubic, octahedral, and tetrahedral faceting. This allows for entropic patches to self-assemble.

Tetrahedral faceted spheres are targeted by beginning with simple spheres. In coordination with the faces of a tetrahedron, the sphere is sliced at four equal facets. Monte Carlo simulations were performed to determine different forms of α, the faceting amount. [2] The particular faceting amount determines the lattice that assembles. Simple cubic lattices are achieved in a similar way by slicing cubic facets into spheres. This allows for the assembly of simple cubic lattices. A bcc crystal is achieved by faceting a sphere octahedrally. [2]

The faceting amount, α, is used in the emergent valence self-assembly to determine what crystal structure will form. A perfect sphere is set as α=0. The shape that is faceted to the sphere is defined at α=1. [2] By fluctuating the faceting amount between α=0 and α=1, the lattice can change. Changes include effects on self-assembly, packing structure, amount of coordination of the faceting patch to the sphere, shape of the faceting patch, type of crystal lattice formed, and the strength of the entropic patch. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Crystallographic defect</span> Disruption of the periodicity of a crystal lattice

A crystallographic defect is an interruption of the regular patterns of arrangement of atoms or molecules in crystalline solids. The positions and orientations of particles, which are repeating at fixed distances determined by the unit cell parameters in crystals, exhibit a periodic crystal structure, but this is usually imperfect. Several types of defects are often characterized: point defects, line defects, planar defects, bulk defects. Topological homotopy establishes a mathematical method of characterization.

<span class="mw-page-title-main">Solvation</span> Association of molecules of a solvent with molecules or ions of a solute

Solvation describes the interaction of a solvent with dissolved molecules. Both ionized and uncharged molecules interact strongly with a solvent, and the strength and nature of this interaction influence many properties of the solute, including solubility, reactivity, and color, as well as influencing the properties of the solvent such as its viscosity and density. If the attractive forces between the solvent and solute particles are greater than the attractive forces holding the solute particles together, the solvent particles pull the solute particles apart and surround them. The surrounded solute particles then move away from the solid solute and out into the solution. Ions are surrounded by a concentric shell of solvent. Solvation is the process of reorganizing solvent and solute molecules into solvation complexes and involves bond formation, hydrogen bonding, and van der Waals forces. Solvation of a solute by water is called hydration.

Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. They are often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other approaches. Monte Carlo methods are mainly used in three problem classes: optimization, numerical integration, and generating draws from a probability distribution.

<span class="mw-page-title-main">Crystal structure</span> Ordered arrangement of atoms, ions, or molecules in a crystalline material

In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions, or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns that repeat along the principal directions of three-dimensional space in matter.

<span class="mw-page-title-main">Truncated tetrahedron</span> Archimedean solid with 8 faces

In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges. It can be constructed by truncating all 4 vertices of a regular tetrahedron at one third of the original edge length.

<span class="mw-page-title-main">Self-assembly</span> Process in which disordered components form an organized structure or pattern

Self-assembly is a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. When the constitutive components are molecules, the process is termed molecular self-assembly.

In physics, an entropic force acting in a system is an emergent phenomenon resulting from the entire system's statistical tendency to increase its entropy, rather than from a particular underlying force on the atomic scale.

<span class="mw-page-title-main">Self-avoiding walk</span> A sequence of moves on a lattice that does not visit the same point more than once

In mathematics, a self-avoiding walk (SAW) is a sequence of moves on a lattice that does not visit the same point more than once. This is a special case of the graph theoretical notion of a path. A self-avoiding polygon (SAP) is a closed self-avoiding walk on a lattice. Very little is known rigorously about the self-avoiding walk from a mathematical perspective, although physicists have provided numerous conjectures that are believed to be true and are strongly supported by numerical simulations.

<span class="mw-page-title-main">Percolation threshold</span> Threshold of percolation theory models

The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making, percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them. The percolation threshold is the critical value of the occupation probability p, or more generally a critical surface for a group of parameters p1, p2, ..., such that infinite connectivity (percolation) first occurs.

Random close packing (RCP) of spheres is an empirical parameter used to characterize the maximum volume fraction of solid objects obtained when they are packed randomly. For example, when a solid container is filled with grain, shaking the container will reduce the volume taken up by the objects, thus allowing more grain to be added to the container. In other words, shaking increases the density of packed objects. But shaking cannot increase the density indefinitely, a limit is reached, and if this is reached without obvious packing into an ordered structure, such as a regular crystal lattice, this is the empirical random close-packed density for this particular procedure of packing. The random close packing is the highest possible volume fraction out of all possible packing procedures.

Dissipative particle dynamics (DPD) is an off-lattice mesoscopic simulation technique which involves a set of particles moving in continuous space and discrete time. Particles represent whole molecules or fluid regions, rather than single atoms, and atomistic details are not considered relevant to the processes addressed. The particles' internal degrees of freedom are integrated out and replaced by simplified pairwise dissipative and random forces, so as to conserve momentum locally and ensure correct hydrodynamic behaviour. The main advantage of this method is that it gives access to longer time and length scales than are possible using conventional MD simulations. Simulations of polymeric fluids in volumes up to 100 nm in linear dimension for tens of microseconds are now common.

<span class="mw-page-title-main">Tetrahedron packing</span>

In geometry, tetrahedron packing is the problem of arranging identical regular tetrahedra throughout three-dimensional space so as to fill the maximum possible fraction of space.

<span class="mw-page-title-main">Colloidal crystal</span> Ordered array of colloidal particles

A colloidal crystal is an ordered array of colloidal particles and fine grained materials analogous to a standard crystal whose repeating subunits are atoms or molecules. A natural example of this phenomenon can be found in the gem opal, where spheres of silica assume a close-packed locally periodic structure under moderate compression. Bulk properties of a colloidal crystal depend on composition, particle size, packing arrangement, and degree of regularity. Applications include photonics, materials processing, and the study of self-assembly and phase transitions.

The BFM is a lattice model for simulating the conformation and dynamics of polymer systems. There are two versions of the BFM used: The earlier version was first introduced by I. Carmesin and Kurt Kremer in 1988, and the later version by J. Scott Shaffer in 1994. Conversion between models is possible.

The Monte Carlo method for electron transport is a semiclassical Monte Carlo (MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to simulate the trajectories of particles as they move across the device under the influence of an electric field using classical mechanics. The scattering events and the duration of particle flight is determined through the use of random numbers.

<span class="mw-page-title-main">Structure of liquids and glasses</span> Atomic-scale non-crystalline structure of liquids and glasses

The structure of liquids, glasses and other non-crystalline solids is characterized by the absence of long-range order which defines crystalline materials. Liquids and amorphous solids do, however, possess a rich and varied array of short to medium range order, which originates from chemical bonding and related interactions. Metallic glasses, for example, are typically well described by the dense random packing of hard spheres, whereas covalent systems, such as silicate glasses, have sparsely packed, strongly bound, tetrahedral network structures. These very different structures result in materials with very different physical properties and applications.

<span class="mw-page-title-main">Sharon Glotzer</span> American physicist

Sharon C. Glotzer is an American scientist and "digital alchemist", the Anthony C. Lembke Department Chair of Chemical Engineering, the John Werner Cahn Distinguished University Professor of Engineering and the Stuart W. Churchill Collegiate Professor of Chemical Engineering at the University of Michigan, where she is also professor of materials science and engineering, professor of physics, professor of macromolecular science and engineering, and professor of applied physics. She is recognized for her contributions to the fields of soft matter and computational science, most notably on problems in assembly science and engineering, nanoscience, and the glass transition, for which the elucidation of the nature of dynamical heterogeneity in glassy liquids is of particular significance. She is a member of the National Academy of Sciences, the National Academy of Engineering, and the American Academy of Arts and Sciences.

<span class="mw-page-title-main">Self-assembly of nanoparticles</span>

Nanoparticles are classified as having at least one of its dimensions in the range of 1-100 nanometers (nm). The small size of nanoparticles allows them to have unique characteristics which may not be possible on the macro-scale. Self-assembly is the spontaneous organization of smaller subunits to form larger, well-organized patterns. For nanoparticles, this spontaneous assembly is a consequence of interactions between the particles aimed at achieving a thermodynamic equilibrium and reducing the system’s free energy. The thermodynamics definition of self-assembly was introduced by Professor Nicholas A. Kotov. He describes self-assembly as a process where components of the system acquire non-random spatial distribution with respect to each other and the boundaries of the system. This definition allows one to account for mass and energy fluxes taking place in the self-assembly processes.

A depletion force is an effective attractive force that arises between large colloidal particles that are suspended in a dilute solution of depletants, which are smaller solutes that are preferentially excluded from the vicinity of the large particles. One of the earliest reports of depletion forces that lead to particle coagulation is that of Bondy, who observed the separation or "creaming" of rubber latex upon addition of polymer depletant molecules to solution. More generally, depletants can include polymers, micelles, osmolytes, ink, mud, or paint dispersed in a continuous phase.

<span class="mw-page-title-main">Sphere packing in a cylinder</span> Three-dimensional packing problem

Sphere packing in a cylinder is a three-dimensional packing problem with the objective of packing a given number of identical spheres inside a cylinder of specified diameter and length. For cylinders with diameters on the same order of magnitude as the spheres, such packings result in what are called columnar structures.

References

  1. 1 2 3 4 Zhang, Zhenli; Glotzer, Sharon C. (2004). "Self-Assembly of Patchy Particles". Nano Letters. 4 (8): 1407–1413. Bibcode:2004NanoL...4.1407Z. doi:10.1021/nl0493500. PMID   29048902.
  2. 1 2 3 4 5 6 7 van Anders, Greg; Ahmed, N. Khalid; Smith, Ross; Engel, Michael; Glotzer, Sharon C. (2014). "Entropically Patchy Particles: Engineering Valence through Shape Entropy". ACS Nano. 8 (1): 931–940. arXiv: 1304.7545 . doi:10.1021/nn4057353. PMID   24359081.
  3. Glotzer, Sharon C.; Solomon, Michael J. (2007). "Anisotropy of building blocks and their assembly into complex structures". Nature Materials. 6 (8): 557–562. doi:10.1038/nmat1949. PMID   17667968.
  4. Fusco, Diana; Charbonneau, Patrick (2013). "The crystallization of asymmetric patchy models for globular proteins in solution". Phys Rev E. 88 (1): 012721. arXiv: 1301.3349 . Bibcode:2013PhRvE..88a2721F. doi:10.1103/PhysRevE.88.012721. PMID   23944504.
  5. Kolafa, Jiří; Nezbeda, Ivo (May 1987). "Monte Carlo simulations on primitive models of water and methanol". Molecular Physics. 61 (1): 161–175. doi:10.1080/00268978700101051. ISSN   0026-8976.
  6. Pawar, Amar B.; Kretzschmar, Ilona (2010). "Fabrication, Assembly, and Application of Patchy Particles". Macromolecular Rapid Communications. 31 (2): 150–168. doi: 10.1002/marc.200900614 . PMID   21590887.
  7. Wang, Yufeng; Wang, Yu; Breed, Dana R.; Manoharan, Vinothan N.; Feng, Lang; Hollingsworth, Andrew D.; Weck, Marcus; Pine, David J. (2012-11-01). "Colloids with valence and specific directional bonding" (PDF). Nature. 491 (7422): 51–55. Bibcode:2012Natur.491...51W. doi:10.1038/nature11564. ISSN   1476-4687. PMID   23128225.
  8. 1 2 3 4 Espinosa, Jorge R.; Garaizar, Adiran; Vega, Carlos; Frenkel, Daan; Collepardo-Guevara, Rosana (2019-06-14). "Breakdown of the law of rectilinear diameter and related surprises in the liquid-vapor coexistence in systems of patchy particles". The Journal of Chemical Physics. 150 (22): 224510. doi:10.1063/1.5098551. ISSN   0021-9606. PMC   6626546 . PMID   31202247.
  9. 1 2 Bianchi, Emanuela; Largo, Julio; Tartaglia, Piero; Zaccarelli, Emanuela; Sciortino, Francesco (2006-10-16). "Phase Diagram of Patchy Colloids: Towards Empty Liquids". Physical Review Letters. 97 (16): 168301. arXiv: cond-mat/0605701 . doi:10.1103/PhysRevLett.97.168301. PMID   17155440.
  10. 1 2 3 4 Rovigatti, Lorenzo, J.R.; Romano, Flavio (2018). "How to Simulate Patchy Particles". The European Physical Journal E. 49 (59): 59. arXiv: 1802.04980 . doi:10.1140/epje/i2018-11667-x. PMID   29748868.{{cite journal}}: CS1 maint: multiple names: authors list (link)