Perimeter fence

Last updated

Demarcation of a perimeter, when the protection of assets, personnel or buildings is required, is normally affected by the building of a perimeter fence system. The level of protection offered varies according to the threat level to the perimeter. Different types of perimeter fencing include:

Contents

Vertical bar fencing has been the most popular form of perimeter security fence since the 1980s. Since the 2000s, welded wire mesh and acoustic barriers have also become popular types of perimeter fence around the world. Vertical bar, acoustic barriers and welded mesh are used in commercial projects and landmarks, [1] and transport hubs. [2]

In high-security applications, sensors may be attached to the fence that generate alarms when they detect someone cutting, climbing, or lifting the fence fabric.

The goal of perimeter fence

The goal of perimeter fence is to stop or prevent the incident and reduce the level of risk. Doing so discourages the perpetrator from committing a harmful event. For example, a high wall with fence posts that protects a property discourages criminals from intruding and, when an incident occurs, increases the time it takes to carry it out.

To meet the security requirements of an area, a thorough analysis must be conducted to determine the level of risk. The greater the probability of the threat occurring, the greater the level of risk. Being able to assess this risk allows you to gather all the data to study and solve a security problem. Then It will be necessary to consider all types of threats that may occur such as: theft, intrusion, robbery, kidnapping, and vandalism.

Two types of security systems

Once you understand the risk you are exposed to, you proceed with the definition of a customized perimeter security system design. The security system is the set of all the methods, procedures, services, which allow, by the adoption of deterrent and protection methods, to reduce the risk.

Security systems are of two types:

·       Passive security system

·       Active security system

The passive security system consists of all the physical methods that interpose themselves between possible threats and what needs to be protected. The purpose of these methods is to discourage attempts to overcome, knock down or climb over them as much as possible. Obstacles are the more efficient the longer it takes to knock them down or climb over them. The passive safety subsystem consists of the following elements:

·       armored doors;

·       armored drawers;

·       reinforced doors;

·       metal fences;

·       reinforced walls;

·       gates;

·       turnstiles;

·       vehicle collision barriers;

·       shatterproof glass;

·       bulletproof glass;

·       general reinforcement;

·       security locks.

The active security system, on the other hand, consists of the electrical, electronic, and telephone methods involved in:

·       monitoring the area and facility for the presence of criminal activity through event detection;

·       evaluate the information provided by the area through a peripheral alarm box;

·       deterring the commissioning of criminal activities by means of deterrents;

·       generate a response through local and remote communication methods;

·       evaluate the information provided by the peripheral alarm control unit and present it to the operator of a remote alarm receiving center.

Apache-Fiber Apache-Fiber.jpg
Apache-Fiber


The elements that constitute the active security system are:

·       detectors;

·       peripheral alarm control unit;

·       means of deterrence (local);

·       means for communicating information remotely;

·       remote alarm receiving unit;

·       accessories;

·       local electrical interconnection network;

·       primary and secondary group power supplies;

·       means of activating and deactivating the subsystem;

·       means of event recording;

·       means of image acquisition and recording;

·       means of human/machine interface;

·       telecommunication network for sending data to a remote-control center.

To move from a high-risk situation to a lower-risk, and therefore more secure, situation, it is necessary to set up all physical obstacles to prevent criminal actions by implementing a passive security system. The latter, however, is not enough; in fact, to have optimal protection, it must be integrated with an active security system that can monitor the structure of the passive system and generate adequate alarm information to verify breakthrough or overrun attempts. Alarm information must be transmitted rapidly to a remote alarm receiving center and presented to an operator who, using the prescribed procedures, activates the appropriate response/intervention service.

Blackfeet-cable-plus Blackfeet-cable-plus.jpg
Blackfeet-cable-plus


It is essential to have a proper balance between the two systems of passive and active security so that the time between detection of criminal activity and intervention is reduced. The active security system consists of the following types of technology, which make up the fundamental architecture:

·       detectors;

·       control of the peripheral alarms;

·       local deterrent methods;

·       means of communicating the information over a distance;

·       remote alarm receiving centre.

Supporting these basic components, or forming a specialised part of them are the following accessories:

·       local electrical interconnection network;

·       primary and secondary group power supplies;

·       means of activation and de-activation of the subsystem;

·       means of recording events;

·       means for capture and recording of images;

·       means for the man/machine interface;

·       a telecommunications network for exchanging data with the remote control centre.

Detectors

Sioux-mems-pro2 Sioux-mems-pro2.jpg
Sioux-mems-pro2


The sensors are the means by which all of the initial information on the threat status is collected and on which the operation of the active security subsystem is based. They analyse what happens in the environment and on the protected structures, they analyse of the threat level according to various types of criteria, from the simplest to the most sophisticated, producing the alarm information that the remaining parts of the subsystem will use. Therefore, in nearly every case, the sensors are not limited to converting the signals from the environment and/or the structure and sending them to the centre for analysis.The sensors, based on efficient processing, become more and more effective, called distributed intelligence, and are true sensors, their own evaluation points, dedicated to the analysis of specific physical phenomenon, in a specific part of the site and cooperating in the performance of the entire protection system. An example of detector applied on a perimeter fence is the mems accelerometer.


The advantages of having a perimeter intrusion detection system are various, and of great importance, for example we obtain a remarkable capacity to analyse the information produced by each sensor, without the need to increase the resources at the centre. Moreover, we obtain a faster analysis speed since it is made by each sensor, only for the part of the site that it is designed to protect. The sensors transform the physical effect into an electrical signal, the evaluation of which provides information on the surrounding environment. To summarise we can therefore say that: the sensors are the sense organs of the active security subsystem.

Classification

The detectors can be classified in different ways, the most meaningful which are:

·       as a function of the physical effect analysed;

·       according to what generates the physical effect to be analysed (Active, Passive);

·       as a function of the type of monitoring provided;

·       as a function of the monitored environment.

The sensors are essentially made up of two parts: the first, called the transducer and the second, the analyser or processor. The transducer transforms the physical effect into an electrical signal. To each physical effect there is associated a different form of energy, so we can have transducers capable of transforming light energy that strikes them into electrical current, others which transform sound energy, others thermal energy, still others for mechanical energy, those for electromagnetic and so on. So the detectors can be distinguished based on the technology employed, which is based on the physical effect that is used to obtain the information from the environment. There are detectors for:

·       Infrared;

·       sound;

·       ultrasound;

·       pressure;

·       Acceleration;

·       electrical capacitance;

·       electrical inductance

·       electric field;


Domestic and residential projects have since the 1980s featured timber fencing as the perimeter to houses and gardens. Ornamental metal railings have also been employed.

In the United Kingdom, perimeter fencing is banned at any sporting stadium after the death of 97 people at Hillsborough Stadium.

See also

Related Research Articles

A communications system or communication system is a collection of individual telecommunications networks systems, relay stations, tributary stations, and terminal equipment usually capable of interconnection and interoperation to form an integrated whole. The components of a communications system serve a common purpose, are technically compatible, use common procedures, respond to controls, and operate in union.

<span class="mw-page-title-main">Fence</span> Freestanding structure preventing movement across a boundary

A fence is a structure that encloses an area, typically outdoors, and is usually constructed from posts that are connected by boards, wire, rails or netting. A fence differs from a wall in not having a solid foundation along its whole length.

<span class="mw-page-title-main">Physical security</span> Measures designed to deny unauthorized access

Physical security describes security measures that are designed to deny unauthorized access to facilities, equipment, and resources and to protect personnel and property from damage or harm. Physical security involves the use of multiple layers of interdependent systems that can include CCTV surveillance, security guards, protective barriers, locks, access control, perimeter intrusion detection, deterrent systems, fire protection, and other systems designed to protect persons and property.

A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities. The process of converting one form of energy to another is known as transduction.

<span class="mw-page-title-main">Smoke detector</span> Device that detects smoke, typically as an indicator of fire

A smoke detector is a device that senses smoke, typically as an indicator of fire. Smoke detectors/Alarms are usually housed in plastic enclosures, typically shaped like a disk about 150 millimetres (6 in) in diameter and 25 millimetres (1 in) thick, but shape and size vary. Smoke can be detected either optically (photoelectric) or by physical process (ionization). Detectors may use one or both sensing methods. Sensitive alarms can be used to detect and deter smoking in banned areas. Smoke detectors in large commercial and industrial buildings are usually connected to a central fire alarm system.

Measurement and signature intelligence (MASINT) is a technical branch of intelligence gathering, which serves to detect, track, identify or describe the distinctive characteristics (signatures) of fixed or dynamic target sources. This often includes radar intelligence, acoustic intelligence, nuclear intelligence, and chemical and biological intelligence. MASINT is defined as scientific and technical intelligence derived from the analysis of data obtained from sensing instruments for the purpose of identifying any distinctive features associated with the source, emitter or sender, to facilitate the latter's measurement and identification.

<span class="mw-page-title-main">Security alarm</span> System that detects unauthorised entry

A security alarm is a system designed to detect intrusions, such as unauthorized entry, into a building or other areas, such as a home or school. Security alarms protect against burglary (theft) or property damage, as well as against intruders. Examples include personal systems, neighborhood security alerts, car alarms, and prison alarms.

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance.

<span class="mw-page-title-main">Electric fence</span> Shock barrier to contain animals or people

An electric fence is a barrier that uses electric shocks to deter people and/or other animals from crossing a boundary. The voltage of the shock may have effects ranging from discomfort to death. Most electric fences are used for agricultural fencing and other forms of non-human animal control, although they are also used to protect high-security areas such as military installations or prisons, where potentially-lethal voltages may be used. Virtual electric fences for livestock using GPS technology have also been developed.

A network tap is a system that monitors events on a local network. A tap is typically a dedicated hardware device, which provides a way to access the data flowing across a computer network.

<span class="mw-page-title-main">Passive infrared sensor</span> Electronic sensor that measures infrared light

A passive infrared sensor is an electronic sensor that measures infrared (IR) light radiating from objects in its field of view. They are most often used in PIR-based motion detectors. PIR sensors are commonly used in security alarms and automatic lighting applications.

<span class="mw-page-title-main">Motion detector</span> Electrical device which utilizes a sensor to detect nearby motion

A motion detector is an electrical device that utilizes a sensor to detect nearby motion. Such a device is often integrated as a component of a system that automatically performs a task or alerts a user of motion in an area. They form a vital component of security, automated lighting control, home control, energy efficiency, and other useful systems.

<span class="mw-page-title-main">Prison escape</span> An inmate leaving prison unlawfully

A prison escape is the act of an inmate leaving prison through unofficial or illegal ways. Normally, when this occurs, an effort is made on the part of authorities to recapture them and return them to their original detainers. Escaping from prison is also a criminal offense in some countries, such as the United States and Canada, and it is highly likely to result in time being added to the inmate's sentence, as well as the inmate being placed under increased security that is most likely a maximum security prison or supermax prison. In Germany, and a number of other countries, it is considered human nature to want to escape from a prison and it is considered as a violation of the right of freedom, so escape is not penalized in itself.

SensorML is an approved Open Geospatial Consortium standard and an XML encoding for describing sensors and measurement processes. SensorML can be used to describe a wide range of sensors, including both dynamic and stationary platforms and both in-situ and remote sensors.

<span class="mw-page-title-main">Tamperproofing</span> Security methodology

Tamperproofing, conceptually, is a methodology used to hinder, deter or detect unauthorised access to a device or circumvention of a security system. Since any device or system can be foiled by a person with sufficient knowledge, equipment, and time, the term "tamperproof" is a misnomer unless some limitations on the tampering party's resources is explicit or assumed.

A gas detector is a device that detects the presence of gases in an area, often as part of a safety system. A gas detector can sound an alarm to operators in the area where the leak is occurring, giving them the opportunity to leave. This type of device is important because there are many gases that can be harmful to organic life, such as humans or animals.

Geophysical MASINT is a branch of Measurement and Signature Intelligence (MASINT) that involves phenomena transmitted through the earth and manmade structures including emitted or reflected sounds, pressure waves, vibrations, and magnetic field or ionosphere disturbances.

<span class="mw-page-title-main">Unattended ground sensor</span> Unattended ground sensor

The Unattended Ground Sensor (UGS) are a variety of small sensors, generally covert, dedicated to detect and identify activities on the ground such as enemy soldiers or vehicles. UGS come as systems with an integrated communication network and processing capabilities.

Perimeter security refers to natural barriers or built fortifications to either keep intruders out or to keep captives contained within the area the boundary surrounds.

<span class="mw-page-title-main">Perimeter intrusion detection</span> Sensor that detects the presence of an intruder

A perimeter intrusion detection system (PIDS) is a device or sensor that detects the presence of an intruder attempting to breach the physical perimeter of a property, building, or other secured area. A PIDS is typically deployed as part of an overall security system and is often found in high-security environments such as correctional facilities, airports, military bases, and nuclear plants.

References

  1. De Astis, Vincenzo; Dischi, Franco (2019). "Manuale delle tecnologie di sicurezza" (in Italian)
  1. "Eiffel Tower perimeter fence built to stop terrorism" . Retrieved 2018-06-15.
  2. "SBD NEWS" . Retrieved 2017-10-16.

Further reading