Phantom structure

Last updated

Phantom structures are artificial structures designed to emulate properties of the human body in matters such as, including, but not limited to, light scattering and optics, electrical conductivity, and sound wave reception. Phantoms have been used experimentally in lieu of, or as a supplement to, human subjects to maintain consistency, verify reliability of technologies, or reduce experimental expense. [1] They also have been employed as material for training technicians to perform imaging. [2]

Contents

Optical phantoms

Optical tissue phantoms, or imaging phantoms, are reported to be used largely for three main purposes: to calibrate optical devices, record baseline reference measurements, and for imaging the human body. [3] Optical tissue phantoms may have irregular shape of body parts. [4]

Composite Materials

Optical phantoms can be made from a number of materials. These are including but not limited to: 

Computational phantoms

Computational human phantoms have many uses, including but not limited to, biomedical imaging computational modeling and simulations, radiation dosimetry, and treatment planning. [5]

Physiological models

Phantom head

While using research oriented and Commercial Off The Shelf (COTS) EEG technologies built for monitoring brain activity, scientists established the need for a benchmark reading of neural electrical activity. [1] EEG readings’ strong dependency on mechanical contact makes the technology sensitive to movement. [6] This and a high responsivity to environmental conditions may lead to signal noise. Without a baseline, it is hard to interpret whether abnormal clinical data is a result of faulty technology, patient inconsistency or noncompliance, ambient noise, or an unexplained scientific principle. [1]

A phantom head was described by researchers in 2015. This head was developed at the U.S. Army Research Laboratory. [1] Reported intent for the engineering of this phantom head was to “accurately recreate real and imaginary scalp impedance, contain internal emitters to create dipoles, and be easily replicable across various labs and research groups.” [7]

The scientists used an inverse 3D printed mold that was reproduced an anonymized MRI image. The head consisted of ballistics gel with a composition that included salt in order to conduct electricity like human tissue. [8] Ballistics gelatin was chosen because it conducts electricity, [8] while also possessing mechanical properties similar to living tissue. [9] [10] Multiple electric wires within the Army’s phantom head carried electric current. A CT scan was used to verify proper electrode placement. [8] The limitations of this phantom was that the material was not sufficiently durable. [1] [8] The refrigerated gel degraded relatively quickly, by approximately .3% each day. [8]

Other reported models had been made of saline filled spheres. [11]

Phantom prostate

In 2013, a patent submission for a prostate phantom was reported. The prostate was composed of three separate phantom layers of prostate, perineal gland, and skin tissue and developed for the study of prostate cancer brachytherapy. The scientists claimed that the phantom emulates the imaging and mechanical properties of the prostate and surrounding tissues. [12]

Phantom ear

In 2002, researchers proposed an ear phantom for experimental studies on sound absorbance rates of cellular emissions. [13]

Phantom skin

Several designs of phantom skin have been developed for various uses including, but not limited to, studying skin lesion therapy, applications of narrowband and ultra-band microwaves (like breast cancer detection), [14] and imaging fingernails and underlying tissues. [15]

Phantom breast

Ultrasound tissue elastography is a method to determine tissue health, as pathologies have been noted to increase the elasticity of tissue. In 2015, a tissue-like agar-based phantom had been reported to be useful in compression elastographical diagnosis of breast cancer. The scientists replicated the clinical appearance of conditions such as fibroadenoma and invasive ductal carcinoma in the phantom breast and compared elastographic and sonographic images. [2]

Additionally, a recipe for the formation of a semi-compressible phantom breast with liquid rubber has been reported. [4]

Phantom muscle

There have been many fabrication methods developed on muscle phantoms over the years, and the research is still going on. Still, here in the year 2020, researchers have developed muscle phantoms to implicate or act as tumors in breast imaging for cancer detection. [16]

Related Research Articles

<span class="mw-page-title-main">Collagen</span> Most abundant structural protein in animals

Collagen is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole-body protein content. Collagen consists of amino acids bound together to form a triple helix of elongated fibril known as a collagen helix. It is mostly found in connective tissue such as cartilage, bones, tendons, ligaments, and skin. Vitamin C is vital for collagen synthesis, and Vitamin E improves the production of collagen.

<span class="mw-page-title-main">Radiation therapy</span> Therapy using ionizing radiation, usually to treat cancer

Radiation therapy or radiotherapy is a treatment using ionizing radiation, generally provided as part of cancer therapy to either kill or control the growth of malignant cells. It is normally delivered by a linear particle accelerator. Radiation therapy may be curative in a number of types of cancer if they are localized to one area of the body, and have not spread to other parts. It may also be used as part of adjuvant therapy, to prevent tumor recurrence after surgery to remove a primary malignant tumor. Radiation therapy is synergistic with chemotherapy, and has been used before, during, and after chemotherapy in susceptible cancers. The subspecialty of oncology concerned with radiotherapy is called radiation oncology. A physician who practices in this subspecialty is a radiation oncologist.

<span class="mw-page-title-main">Medical ultrasound</span> Diagnostic and therapeutic technique

Medical ultrasound includes diagnostic techniques using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics or to generate an informative audible sound. The usage of ultrasound to produce visual images for medicine is called medical ultrasonography or simply sonography, or echography. The practice of examining pregnant women using ultrasound is called obstetric ultrasonography, and was an early development of clinical ultrasonography. The machine used is called an ultrasound machine, a sonograph or an echograph. The visual image formed using this technique is called an ultrasonogram, a sonogram or an echogram.

<span class="mw-page-title-main">Medical imaging</span> Technique and process of creating visual representations of the interior of a body

Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to reveal internal structures hidden by the skin and bones, as well as to diagnose and treat disease. Medical imaging also establishes a database of normal anatomy and physiology to make it possible to identify abnormalities. Although imaging of removed organs and tissues can be performed for medical reasons, such procedures are usually considered part of pathology instead of medical imaging.

<span class="mw-page-title-main">Elastography</span> Any of several imaging modalities that map degrees of soft-tissue elasticity and stiffness

Elastography is any of a class of medical imaging modalities that map the elastic properties and stiffness of soft tissue. The main idea is that whether the tissue is hard or soft will give diagnostic information about the presence or status of disease. For example, cancerous tumours will often be harder than the surrounding tissue, and diseased livers are stiffer than healthy ones.

<span class="mw-page-title-main">Near-infrared spectroscopy</span> Analytical method

Near-infrared spectroscopy (NIRS) is a spectroscopic method that uses the near-infrared region of the electromagnetic spectrum. Typical applications include medical and physiological diagnostics and research including blood sugar, pulse oximetry, functional neuroimaging, sports medicine, elite sports training, ergonomics, rehabilitation, neonatal research, brain computer interface, urology, and neurology. There are also applications in other areas as well such as pharmaceutical, food and agrochemical quality control, atmospheric chemistry, combustion research and knowledge.

<i>Ex vivo</i> Process of testing biological interventions on extracted fragments of organisms

Ex vivo literally means that which takes place outside an organism. In science, ex vivo refers to experimentation or measurements done in or on tissue from an organism in an external environment with minimal alteration of natural conditions.

Medical optical imaging is the use of light as an investigational imaging technique for medical applications, pioneered by American Physical Chemist Britton Chance. Examples include optical microscopy, spectroscopy, endoscopy, scanning laser ophthalmoscopy, laser Doppler imaging, and optical coherence tomography. Because light is an electromagnetic wave, similar phenomena occur in X-rays, microwaves, and radio waves.

<span class="mw-page-title-main">Functional near-infrared spectroscopy</span> Optical technique for monitoring brain activity

Functional near-infrared spectroscopy (fNIRS) is an optical brain monitoring technique which uses near-infrared spectroscopy for the purpose of functional neuroimaging. Using fNIRS, brain activity is measured by using near-infrared light to estimate cortical hemodynamic activity which occur in response to neural activity. Alongside EEG, fNIRS is one of the most common non-invasive neuroimaging techniques which can be used in portable contexts. The signal is often compared with the BOLD signal measured by fMRI and is capable of measuring changes both in oxy- and deoxyhemoglobin concentration, but can only measure from regions near the cortical surface. fNIRS may also be referred to as Optical Topography (OT) and is sometimes referred to simply as NIRS.

<span class="mw-page-title-main">Nanofiber</span> Natural or synthetic fibers with diameters in the nanometer range

Nanofibers are fibers with diameters in the nanometer range. Nanofibers can be generated from different polymers and hence have different physical properties and application potentials. Examples of natural polymers include collagen, cellulose, silk fibroin, keratin, gelatin and polysaccharides such as chitosan and alginate. Examples of synthetic polymers include poly(lactic acid) (PLA), polycaprolactone (PCL), polyurethane (PU), poly(lactic-co-glycolic acid) (PLGA), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and poly(ethylene-co-vinylacetate) (PEVA). Polymer chains are connected via covalent bonds. The diameters of nanofibers depend on the type of polymer used and the method of production. All polymer nanofibers are unique for their large surface area-to-volume ratio, high porosity, appreciable mechanical strength, and flexibility in functionalization compared to their microfiber counterparts.

Magnetic resonance elastography (MRE) is a form of elastography that specifically leverages MRI to quantify and subsequently map the mechanical properties of soft tissue. First developed and described at Mayo Clinic by Muthupillai et al. in 1995, MRE has emerged as a powerful, non-invasive diagnostic tool, namely as an alternative to biopsy and serum tests for staging liver fibrosis.

<span class="mw-page-title-main">Bruce J. Tromberg</span> American chemist

Bruce J. Tromberg is an American photochemist and a leading researcher in the field of biophotonics. He is the director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) within the National Institutes of Health (NIH). Before joining NIH, he was Professor of Biomedical Engineering at The Henry Samueli School of Engineering and of Surgery at the School of Medicine, University of California, Irvine. He was the principal investigator of the Laser Microbeam and Medical Program (LAMMP), and the Director of the Beckman Laser Institute and Medical Clinic at Irvine. He was a co-leader of the Onco-imaging and Biotechnology Program of the NCI Chao Family Comprehensive Cancer Center at Irvine.

<span class="mw-page-title-main">Magnetomyography</span>

Magnetomyography (MMG) is a technique for mapping muscle activity by recording magnetic fields produced by electrical currents occurring naturally in the muscles, using arrays of SQUIDs. It has a better capability than electromyography for detecting slow or direct currents. The magnitude of the MMG signal is in the scale of pico (10−12) to femto (10−15) Tesla (T). Miniaturizing MMG offers a prospect to modernize the bulky SQUID to wearable miniaturized magnetic sensors.

Computational human phantoms are models of the human body used in computerized analysis. Since the 1960s, the radiological science community has developed and applied these models for ionizing radiation dosimetry studies. These models have become increasingly accurate with respect to the internal structure of the human body.

Xie George Xu was the Edward E. Hood Chair Professor of Engineering at Rensselaer Polytechnic Institute (RPI), Troy, New York, United States, before he relocated in 2020 to China and joined the faculty of the University of Science and Technology of China.

Optical coherence elastography (OCE) is an emerging imaging technique used in biomedical imaging to form pictures of biological tissue in micron and submicron level and maps the biomechanical property of tissue.

Time-domain diffuse optics or time-resolved functional near-infrared spectroscopy is a branch of functional near-Infrared spectroscopy which deals with light propagation in diffusive media. There are three main approaches to diffuse optics namely continuous wave (CW), frequency domain (FD) and time-domain (TD). Biological tissue in the range of red to near-infrared wavelengths are transparent to light and can be used to probe deep layers of the tissue thus enabling various in vivo applications and clinical trials.

Diffuse optical mammography, or simply optical mammography, is an emerging imaging technique that enables the investigation of the breast composition through spectral analysis. It combines in a single non-invasive tool the capability to implement breast cancer risk assessment, lesion characterization, therapy monitoring and prediction of therapy outcome. It is an application of diffuse optics, which studies light propagation in strongly diffusive media, such as biological tissues, working in the red and near-infrared spectral range, between 600 and 1100 nm.

<span class="mw-page-title-main">Tomoelastography</span> Medical imaging technique

Tomoelastography is a medical imaging technique that provides quantitative maps of the mechanical properties of biological soft tissues with high spatial resolution. It is an advancement of elastography in that it generates unmasked maps of stiffness and viscosity across the entire field of view that can be captured with a given imaging modality. Medical ultrasound and magnetic resonance imaging (MRI) are the most commonly used imaging modalities for elastography. Classical elastography only measures stiffness in a limited region, such as at a depth of 6 cm in the liver or in a selected liver lobe, and thus cannot provide an overview of the adjacent tissues or organs. Tomoelastography, on the other hand, is a radiological imaging method that allows estimation of quantitative mechanical parameters of all organs and structures in the field of view. Moreover, tomoelastography does not rely on a single, specific imaging modality. While it has been introduced and is mostly performed using magnetic resonance elastography (MRE), tomoelastography can be extended to other imaging techniques as well.

Paola Taroni is an Italian engineer and physicist at the Polytechnic University of Milan. Her research considers the development of optical approaches for cancer diagnoses. She has held various leadership positions.

References

  1. 1 2 3 4 5 "'Phantom head' may one day take guesswork out of EEG monitoring". www.army.mil. Retrieved 2018-08-22.
  2. 1 2 Manickam K, Reddy MR, Seshadri S, Raghavan B (October 2015). "Development of a training phantom for compression breast elastography-comparison of various elastography systems and numerical simulations". Journal of Medical Imaging. 2 (4): 047002. doi:10.1117/1.JMI.2.4.047002. PMC   4682573 . PMID   26697511.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 "Project: Optical Phantoms". omlc.org. Retrieved 2018-08-22.
  4. 1 2 3 4 "Photon Migration Imaging Lab". www.nmr.mgh.harvard.edu. Retrieved 2018-08-22.
  5. "6th International Workshop on Computational Human Phantoms | August 27 – 30, 2017 in historic Annapolis, MD, USA". www.cpworkshop.org. Retrieved 2018-08-22.
  6. Slipher GA, Hairston WD, Bradford JC, Bain ED, Mrozek RA (2018-02-06). "Carbon nanofiber-filled conductive silicone elastomers as soft, dry bioelectronic interfaces". PLOS ONE. 13 (2): e0189415. Bibcode:2018PLoSO..1389415S. doi: 10.1371/journal.pone.0189415 . PMC   5800568 . PMID   29408942.
  7. Hairston WD, A Slipher G, B Yu A (2016-09-24). "Ballistic gelatin as a putative substrate for EEG phantom devices". arXiv: 1609.07691 . Bibcode:2016arXiv160907691H.{{cite journal}}: Cite journal requires |journal= (help)
  8. 1 2 3 4 5 "Summer student's EEG research continues to develop at ARL | U.S. Army Research Laboratory". www.arl.army.mil. Retrieved 2018-08-22.
  9. Richler, D; Rittel, D (2014-06-01). "On the Testing of the Dynamic Mechanical Properties of Soft Gelatins". Experimental Mechanics. 54 (5): 805–815. doi:10.1007/s11340-014-9848-4. S2CID   54833737.
  10. Farrer AI, Odéen H, de Bever J, Coats B, Parker DL, Payne A, Christensen DA (2015-06-16). "Characterization and evaluation of tissue-mimicking gelatin phantoms for use with MRgFUS". Journal of Therapeutic Ultrasound. 3: 9. doi: 10.1186/s40349-015-0030-y . PMC   4490606 . PMID   26146557.
  11. Collier, T. J.; Kynor, D. B.; Bieszczad, J.; Audette, W. E.; Kobylarz, E. J.; Diamond, S. G. (2012). "Creation of a Human Head Phantom for Testing of Electroencephalography Equipment and Techniques - IEEE Journals & Magazine". IEEE Transactions on Bio-Medical Engineering. 59 (9): 2628–34. doi:10.1109/TBME.2012.2207434. PMID   22911537. S2CID   19579230.
  12. "U.S. Patent No. US 8,480.407 B2" (issued Jul.9, 2013)
  13. Gandhi OP, Kang G (2002). "Some present problems and a proposed experimental phantom for SAR compliance testing of cellular telephones at 835 and 1900 MHz". Physics in Medicine and Biology. 47 (9): 1501–18. Bibcode:2002PMB....47.1501G. doi:10.1088/0031-9155/47/9/306. ISSN   0031-9155. PMID   12043816. S2CID   250871611.
  14. Lazebnik M, Madsen EL, Frank GR, Hagness SC (September 2005). "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications". Physics in Medicine and Biology. 50 (18): 4245–58. Bibcode:2005PMB....50.4245L. doi:10.1088/0031-9155/50/18/001. PMID   16148391. S2CID   17931087.
  15. Tuchin VV, Bashkatov AN, Genina EA, Kochubey V, Lychagov V, Portnov SA, Trunina NA, Miller DR, Cho S (2011-02-10). "Finger tissue model and blood perfused skin tissue phantom". Dynamics and Fluctuations in Biomedical Photonics VIII. 7898. SPIE: 78980Z. Bibcode:2011SPIE.7898E..0ZT. doi:10.1117/12.881604. S2CID   31031331.
  16. Joseph, Laya; Asan, Noor Badariah; Ebrahimizadeh, Javad; Chezhian, Arvind Selvan; Perez, Mauricio D.; Voigt, Thiemo; Augustine, Robin (March 2020). "Non-Invasive Transmission Based Tumor Detection Using Anthropomorphic Breast Phantom at 2.45 GHZ". 2020 14th European Conference on Antennas and Propagation (EuCAP). Copenhagen, Denmark: IEEE. pp. 1–5. doi:10.23919/EuCAP48036.2020.9135953. ISBN   978-88-31299-00-8. S2CID   220474009.